Preliminares del flujo geodésico Grupos de Lie dos pasos nilpotentes Primeras integrales Ejemplos

Encuentro Argentino de Mecánica Geométrica y Física-Matemática

Flujos geodésicos completamente integrables: ejemplos desde grupos de Lie

Gabriela P. Ovando

Universidad Nacional de Rosario y CONICET

gabriela@fceia.unr.edu.ar

Indice

- Preliminares del flujo geodésico
 - En grupos de Lie
- Que Grupos de Lie dos pasos nilpotentes
- Openition of the second of
 - Funciones invariantes
 - Órbitas coadjuntas
- 4 Ejemplos

Sea M una variedad diferenciable. Sea T^*M espacio cotangente. Para cada $\psi \in T_\eta(T^*M)$ defina la 1-forma $\bar{\Theta}$ por

$$\bar{\Theta}(\psi) := \eta(d\tilde{\pi}(\psi)),$$

donde $\tilde{\pi}: T^*M \to M$, entonces

$$d\tilde{\Theta} := \tilde{\Omega}$$

es una forma simpléctica. Supongamos $\langle \, , \, \rangle$ es una métrica riemanniana en M, entonces la forma simpléctica de T^*M se induce a TM.

Nos interesan M un grupo de Lie munido de una métrica invariante a izquierda, \Longrightarrow determinada en \mathfrak{g} .

Sea N un grupo de Lie con

- álgebra de Lie π,
- métrica en N (y \mathfrak{n}) $\langle \, , \, \rangle$
- con espacio tangente TN, $TN \simeq N \times \mathfrak{n}$, y $T_{(m,Y)}(TN) \simeq \mathfrak{n} \times \mathfrak{n}$
- Ω la forma simpléctica en TN.

Si $f: TN \to \mathbb{R}$ es una función diferenciable, entonces tenemos los campos hamiltoniano X_f y gradiente grad f

$$df_{(m,Y)}((U,V)) = \Omega_m(X_f,(U,V)) = \langle \operatorname{grad} f,(U,V) \rangle_m$$

Donde la métrica en $\mathfrak{n} \times \mathfrak{n}$ es la producto.

Si
$$\operatorname{grad}_{(m,Y)} f = (U, V)$$
 entonces

$$X_f(m, Y) = (V, ad^t(V)(Y) - U)$$
 y el corchete de Poisson sigue:

$$\{f,g\}_{(m,Y)} = \langle U;V' \rangle - \langle U',V \rangle + \langle [Y,[V,V'] \rangle$$

para $g:TN \to \mathbb{R}$ diferenciable con grad $g=(U',V')$

N grupo de Lie 2-pasos nilpotente: tiene álgebra de Lie 2-pasos nilpotente:

$$[U, [V, W]] = 0$$
 para todos $U, V, W \in \mathfrak{n}$.

Luego $C(\mathfrak{n}) \subseteq \mathfrak{z}$ y luego para $\langle \, , \, \rangle$

$$\mathfrak{n} = \mathfrak{v} \oplus \mathfrak{z}, \text{ con } \mathfrak{v} = \mathfrak{z}^{\perp},$$

y se definen $j(Z): \mathfrak{v} \to \mathfrak{v}$ antisimétrica por

$$\langle Z, [U, V] \rangle = \langle j(Z)U, V \rangle.$$

Ejemplos:

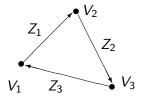
• El álgebra de Heisenberg de dimensión 2n+1:

$$[X_i, Y_i] = Z$$
 para $i = 1, \dots, n$.

j(Z) consiste de bloques múltiplos de

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

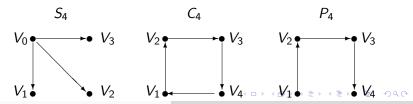
álgebras asociadas a grafos:



con

$$j(aZ_1 + bZ_2 + cZ_3) = \begin{pmatrix} 0 & -a & -c \\ a & 0 & -b \\ c & b & 0 \end{pmatrix}$$

en la base $\{V_1, V_2, V_3\}$ de \mathfrak{v} . Otros



n se dice

- no singular si toda j(Z) es no singular
- casi no singular si existe j(Z) no singular pero también existe otra singular.
- singular si toda j(Z) es singular.

Ejemplos: Excepto K_2 toda $\mathfrak n$ asociada a un grafo es casi no singular o singular.

Sea

$$\begin{array}{lll} \mathfrak{n}_{V+Z} & = & \{X \in \mathfrak{n} \, : \, \langle V+Z, \operatorname{ad}(X)U \rangle = 0 \text{ for all } U \in \mathfrak{n} \} \\ & = & \left\{ \begin{array}{ll} \mathfrak{n} & \operatorname{si} \, Z = 0 \\ \mathfrak{z} \oplus \ker j(Z) & \operatorname{si} \, Z \neq 0 \end{array} \right. \end{array}$$

 ℓ_{V+Z} es regular si ℓ_{V+Z} tiene dimensión minimal y $\mathfrak n$ se dice *no-integrable* si existe un subconjunto abierto denso $\mathcal W$ de $\mathfrak n^* \times \mathfrak n^*$ tal que $(\ell_{V+Z}, \ell_{V'+Z'}) \in \mathcal W$, ambos regulares y $[\mathfrak n_{\ell_{V+Z}}, \mathfrak n_{\ell_{V'+Z'}}]$ tiene dimensión positiva.

Ejemplo: K_3 es no integrable

Resultados importantes (=motivadores)

Theorem (Butler)

 \mathfrak{n} no integrable \Rightarrow el flujo geodésico en $\Gamma \setminus N$ es no integrable para ningún lattice y ninguna métrica invariante a izquierda.

Ejemplo: álgebras de Lie asociadas a grafos completos K_{2n+1} .

$\mathsf{Theorem}\;(\mathsf{Butler} + \mathsf{Bolsinov})$

 \mathfrak{n} casi no singular \Rightarrow el flujo geodésico es completamente integrable en $\Gamma \backslash N$.

No integrable $\Rightarrow \mathfrak{n}$ singular.

Qué pasa con los recíprocos?

Completamente integrable en el sentido usual

: si existen n funciones en involución que conmutan Poisson con la

• Si M es variedad riemanniana y X^* es un campo de Killing en M, entonces $f_{X^*}:TM\to\mathbb{R}$ dada por

$$f_{X^*}(v) = \langle X^*(\pi(v)), v \rangle$$

es una primera integral del flujo geodésico.

• Otros... Thimm, Adler-Kostant-Symes, etc...

N actúa en $TN \simeq N \times \mathfrak{n}$ por

$$n\cdot(m,Y)=(nm,Y).$$

 $f: TN \to \mathbb{R}$ es invariante si $f(m, Y) = f(e, Y) \ \forall m \in N, Y \in \mathfrak{n}$.

Ejemplo: La función energía para la métrica invariante a izquierda.

Sobre las funciones invariantes

1

 $\{F: TN \to \mathbb{R} : F \text{ invariant }\} \longleftrightarrow \{f: \mathfrak{n} \to \mathbb{R}\}.$ En efecto, $F: TN \to \mathbb{R}$ define $f: \mathfrak{n} \to \mathbb{R}$ como

$$f(Y) = F(e, Y).$$

2

Si $F_1, F_2 : TN \to \mathbb{R}$ funciones invariantes con gradientes $grad(F_i)(p, Y) = (0, V_{F_i})$ for i = 1, 2. Entonces

$$\{F_1, F_2\}(m, Y) = -\langle Y, [V_{F_1}, V_{F_2}]\rangle$$

Ejemplos de funciones invariantes

lacktriangledown Dado $Z_0 \in \mathfrak{z}$, entonces $f_{Z_0}: TN
ightarrow \mathbb{R}$ es primera integral, donde

$$f_{Z_0}(m, Y) = \langle Y, Z_0 \rangle.$$

Y la familia $\{f_{Z_0}\}_{Z_0 \in \mathfrak{z}}$ es una familia Poisson-conmutativa de primeras integrales.

Sea $A : \mathfrak{n} \to \mathfrak{n}$ endomorfismo simétrico de \mathfrak{n} y sea $g_A : TN \to \mathbb{R}$:

$$g_A(m, Y) = \frac{1}{2}\langle Y, AY \rangle.$$

 g_A es primera integral $\iff \langle Y, [AY, Y] \rangle = 0$.

Supongamos $A: \mathfrak{v} \to \mathfrak{v}$ simétrico, entonces g_A es primera integral si y sólo si

$$[J(Z),A]=0 \quad \forall Z\in\mathfrak{z}$$

y
$$\{g_A,g_B\}=0$$
 si y sólo si $J(Z)AB=J(Z)BA$

La aplicación de Gauss

En \mathfrak{n}^* tenemos las órbitas coadjuntas y via $\langle \, , \, \rangle$ pasamos a $\mathfrak{n} \colon$ la acción

$$g \cdot \ell_Y(U) = \langle Y, Ad(g^{-1})Y \rangle = \langle Ad(g^{-1})^t X, Y \rangle$$

 $\Longrightarrow g \cdot X = Ad(g^{-1})^t(X)$. El campo inducido por $X \in \mathfrak{n}$ en \mathfrak{n} es

$$\widetilde{X}(Y) = \frac{d}{ds}_{|_{s=0}} \exp(sX) \cdot Y = -\operatorname{ad}^t(X)(Y).$$

Inducimos la estructura simpléctica de \mathfrak{n}^* a \mathfrak{n} y tenemos

$$\omega_Y(\tilde{X}, \tilde{U}) = -\langle Y, [X, U] \rangle$$
 for all $X, U \in \mathfrak{n}$.

Para $f,g\in C^\infty(\mathfrak{n})$ tenemos

$$\{f,g\}(Y) = -\langle Y, [V_f, V_g] \rangle,$$

donde V_f, V_g denotan los respectivos gradientes de f, g

Sea
$$G: TN \to \mathfrak{n}$$
 dada por $G(m, Y) = Y$. Con $dG_{(m,Y)}(U,V) = V$ y pullback $\delta G: \mathfrak{n}^* \to T^*N$, se tiene

$$\delta G(\omega)((U_1, V_1), (U_2, V_2)(m, Y) = \omega_{G(m,Y)}(dG(U_1, V_1), dG(U, V))
= \omega_Y(V_1, V_2)
= \Omega_{(m,Y)}((0, V_1), (0, V_2)).$$

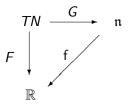
Proposition Sea N grupo de Lie con álgebra de Lie \mathfrak{n} . Sea $G:TN\to\mathfrak{n}$ la aplicación de Gauss.

(1) Para $f_1, f_2 : \mathfrak{n} \to \mathbb{R}$ se tiene $f_i \circ G : TN \to \mathbb{R}$ tal que si $(m, Y) \in TN$:

$$\{f_1 \circ G, f_2 \circ G\}(m, Y) = \{f_1, f_2\} \circ G(m, Y) = -\langle Y, [V_{f_1}, V_{f_2}] \rangle \ (1)$$

donde $V_{f_i} = \operatorname{grad} f_i$ tal que $\operatorname{grad}(f_i \circ G) = (0, V_{f_i})$. Claramente $f_i \circ G : TN \to \mathbb{R}$ es invariante.

(2) Dada $F:TN\to\mathbb{R}$ existe $f:\mathfrak{n}\to\mathbb{R}$ tal que $f\circ G=F$ si y sólo si F es invariant. En tal caso tenemos el siguiente diagrama conmutativo



Luego para funciones diferenciables $F_i: TN \to \mathbb{R}$, con funciones asociadas $f_i: \mathfrak{n} \to \mathbb{R}$: $F_i = f_i \circ G$, for i = 1, 2, tenemos

$${F_1, F_2}(m, Y) = {f_1, f_2} \circ G(m, Y).$$

Por ejemplo: $f_i : \mathfrak{n} \to \mathfrak{n}$, $\mathfrak{n} = \mathfrak{v} \oplus \mathfrak{z}$, dada por

$$\bar{f}_i(V+Z) = \langle V, j(Z)^{2i-2}V \rangle$$

define $f_i:TN o\mathbb{R}$ como $f_i(m,Y)=ar{f_i}(Y)$ y $\{f_i,f_j\}=0$. (Butler)

En el grupo de Heisenberg: $A_i : v \rightarrow v$ simétrico, entonces

$$A \rightarrow JA$$

es una biyección entre el conjunto de primeras integrales cuadráticas invariantes y el conjunto de derivaciones antisimétricas de \mathfrak{h}_n .

Ejemplos

• El flujo geodésico en TH_n es completamente integrable. (Butler - Kocsard-O.-Reggiani: nuevas familias)

Hay n + 1 funciones invariantes en involución.

$$arphi: \mathit{L}(\mathit{Iso})(\mathit{N}) o \mathit{C}^{\infty}(\mathit{TN})$$
 dada por

$$X^* \longrightarrow f_{X^*} \quad (f_{X^*}(m,Y) = \langle X^*,Y \rangle)$$

es un isomorfismo sobre la imagen.

Si tomamos un lattice $\Gamma \subset H_n$ entonces es completamente integrable en $T(\Gamma \backslash N)$.

Tomando el lattice de entradas enteras en H_n $\Gamma \setminus H_n$ es un T^{n+1} -fibrado sobre T^n .

En dimensión tres: Un S^1 -fibrado sobre T^2 (Thurston)

Nuevos ejemplos

Grafo estrella: S_k en k+1-vértices. N_{S_k} tiene dimensión 2k+1. Tenemos vértices base $V_0, V_1, \ldots V_n$ y aristas $Z_1, \ldots Z_n$ con $[V_0, V_i] = Z_i$. Si $Z = a_1 Z_1 + \ldots + a_n Z_n$, la matriz de j(Z) en la base V_0, V_1, \ldots, V_k , es

$$\begin{pmatrix} 0 & -a_1 & -a_2 & \dots & -a_n \\ a_1 & 0 & 0 & \dots & 0 \\ a_2 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_n & 0 & 0 & \dots & 0 \end{pmatrix}.$$

 $\implies i(Z)$ es singular para k+1>2.

Tomamos $(k+2) \times (k+2)$ -matrices de la forma

$$N_{S_k} = \left\{ egin{pmatrix} 1 & x_0 & z_1 & z_2 & \dots & z_n \ 0 & 1 & x_1 & x_2 & \dots & x_n \ 0 & 0 & 1 & 0 & \dots & 0 \ 0 & 0 & 0 & 1 & \dots & 0 \ 0 & & & 0 & \ddots & \vdots \ 0 & & & & 1 \end{pmatrix},
ight\}$$

con la multiplicación usual de matrices.

Sea $\Gamma_r < N_{S_k}$:

$$\Gamma_r = \left\{ \begin{pmatrix} 1 & rn & q_1 & q_2 & \dots & q_k \\ 0 & 1 & m_1 & m_2 & \dots & m_k \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ 0 & & & 0 & \ddots & \vdots \\ 0 & & & & 1 \end{pmatrix} \right. \qquad \text{for} \quad r, m_i, q_j \in \mathbb{Z}, \forall i, j$$

La variedad compacta $\Gamma_r \setminus N_{S_k}$ es un S^1 -fibrado sobre T^{2k} :

$$S^1 \rightarrow \Gamma_r \backslash N_{S_k} \rightarrow T^{2n}$$
.

Theorem

El flujo geodésico en N_{S_k} es completamente integrable: $\{E, f_{Z_j}, f_{V_j^*}\}_{j=1}^k$ primeras integrales están en involución cuyos gradientes son li en un abierto denso. Con $\exp(W) = m \in N$:

$$E(m, Y) = \frac{1}{2}(y_0^2 + y_1^2 + \dots + y_k^2 + z_1^2 + \dots + z_k^2)$$

$$f_{V_1^*}(m, Y) = y_1 - w_0 z_1$$

$$\vdots$$

$$f_{V_k^*}(m, Y) = y_k - w_0 z_k$$

$$f_{Z_1}(m, Y) = z_1$$

$$\vdots$$

$$f_{Z_k}(m, Y) = z_k$$

Observaciones:

- Las primeras integrales son polinomiales en las coordenadas.
- n+1 primeras integrales invariantes: 1 cuadrática y n que provienen del centro de \mathfrak{n} .

Obstrucciones topológicas para completa integrabilidad:

Ejemplo: flujo completamente integrable en M compacta \Longrightarrow conjunto denso de geodésicas cerradas.

Preliminares del flujo geodésico Grupos de Lie dos pasos nilpotentes Primeras integrales Ejemplos

Gracias!