Teoría de Hamilton-Jacobi e integrabilidad por cuadraturas en variedades simplécticas y de Poisson

Sergio Grillo

Instituto Balseiro - Centro Atómico Bariloche

27 de septiembre de 2017

Encuentro Argentino de Mecánica Geométrica y Física Matemática, Mar del Plata

Sea Q una variedad y $H: T^*Q \to \mathbb{R}$ una función.

Sea Q una variedad y $H:T^*Q\to\mathbb{R}$ una función. Se dice que $W:Q\to\mathbb{R}$ es solución de la ecuación clásica de Hamilton-Jacobi (independiente del tiempo) para H

Sea Q una variedad y $H: T^*Q \to \mathbb{R}$ una función. Se dice que $W: Q \to \mathbb{R}$ es solución de la ecuación clásica de Hamilton-Jacobi (independiente del tiempo) para H si cumple d ($H \circ dW$) = 0.

Sea Q una variedad y $H: T^*Q \to \mathbb{R}$ una función. Se dice que $W: Q \to \mathbb{R}$ es solución de la ecuación clásica de Hamilton-Jacobi (independiente del tiempo) para H si cumple d ($H \circ dW$) = 0. También se dice que una sección $\sigma: Q \to T^*Q$ (del fibrado cotangente) es solución de la ecuación clásica si

$$d\left(H\circ\sigma\right)=0$$

Sea Q una variedad y $H: T^*Q \to \mathbb{R}$ una función. Se dice que $W: Q \to \mathbb{R}$ es solución de la ecuación clásica de Hamilton-Jacobi (independiente del tiempo) para H si cumple d ($H \circ dW$) = 0. También se dice que una sección $\sigma: Q \to T^*Q$ (del fibrado cotangente) es solución de la ecuación clásica si

$$d\left(H\circ\sigma\right)=0$$

y además $\sigma^*\omega_Q=d\sigma=0$, siendo ω_Q la forma simpléctica canónica de T^*Q .

Sea Q una variedad y $H: T^*Q \to \mathbb{R}$ una función. Se dice que $W: Q \to \mathbb{R}$ es solución de la ecuación clásica de Hamilton-Jacobi (independiente del tiempo) para H si cumple d ($H \circ dW$) = 0. También se dice que una sección $\sigma: Q \to T^*Q$ (del fibrado cotangente) es solución de la ecuación clásica si

$$d(H\circ\sigma)=0$$

y además $\sigma^*\omega_Q=d\sigma=0$, siendo ω_Q la forma simpléctica canónica de T^*Q . Notar que Im σ es una subvariedad *isotrópica*: $T{\rm Im}\sigma\subseteq (T{\rm Im}\sigma)^\perp$ (más aún, es Lagrangiana).

Sea Q una variedad y $H: T^*Q \to \mathbb{R}$ una función. Se dice que $W: Q \to \mathbb{R}$ es solución de la ecuación clásica de Hamilton-Jacobi (independiente del tiempo) para H si cumple d ($H \circ dW$) = 0. También se dice que una sección $\sigma: Q \to T^*Q$ (del fibrado cotangente) es solución de la ecuación clásica si

$$d\left(H\circ\sigma\right)=0$$

y además $\sigma^*\omega_Q=d\sigma=0$, siendo ω_Q la forma simpléctica canónica de T^*Q . Notar que $\mathrm{Im}\sigma$ es una subvariedad *isotrópica*: $T\mathrm{Im}\sigma\subseteq (T\mathrm{Im}\sigma)^\perp$ (más aún, es Lagrangiana). Es posible reescribir la ecuación de arriba en términos de X_H , el campo Hamiltoniano de H, y la proyección canónica $\pi_Q:T^*Q\to Q$.

Sea Q una variedad y $H: T^*Q \to \mathbb{R}$ una función. Se dice que $W: Q \to \mathbb{R}$ es solución de la ecuación clásica de Hamilton-Jacobi (independiente del tiempo) para H si cumple d ($H \circ dW$) = 0. También se dice que una sección $\sigma: Q \to T^*Q$ (del fibrado cotangente) es solución de la ecuación clásica si

$$d\left(H\circ\sigma\right)=0$$

y además $\sigma^*\omega_Q=d\sigma=0$, siendo ω_Q la forma simpléctica canónica de T^*Q . Notar que $\mathrm{Im}\sigma$ es una subvariedad *isotrópica*: $T\mathrm{Im}\sigma\subseteq (T\mathrm{Im}\sigma)^\perp$ (más aún, es Lagrangiana). Es posible reescribir la ecuación de arriba en términos de X_H , el campo Hamiltoniano de H, y la proyección canónica $\pi_Q:T^*Q\to Q$. Se obtiene

$$\sigma_* \circ (\pi_Q)_* \circ X_H \circ \sigma = X_H \circ \sigma.$$

¹S. Grillo, E. Padrón, Journal of Geometry and Physics 140 (2016) 101–129.

Sea M una variedad, $X \in \mathfrak{X}(M)$ y $\Pi : M \to N$ una fibración.

¹S. Grillo, E. Padrón, Journal of Geometry and Physics 140 (2016) 101–129.

Sea M una variedad, $X \in \mathfrak{X}(M)$ y $\Pi : M \to N$ una fibración. Diremos que una sección $\sigma: N \to M$ de Π es una solución de la Π -HJE para (M, X) si

¹S. Grillo, E. Padrón, Journal of Geometry and Physics 110 (2016) 101–129.

Sea M una variedad, $X \in \mathfrak{X}(M)$ y $\Pi: M \to N$ una fibración. Diremos que una sección $\sigma: N \to M$ de Π es una **solución**¹ **de la** Π -HJE para (M,X) si

$$\sigma_* \circ \Pi_* \circ X \circ \sigma = X \circ \sigma.$$

¹S. Grillo, E. Padrón, Journal of Geometry and Physics 110 (2016) 101–129.

Sea M una variedad, $X \in \mathfrak{X}(M)$ y $\Pi: M \to N$ una fibración. Diremos que una sección $\sigma: N \to M$ de Π es una solución de la Π -HJE para (M,X) si

$$\sigma_* \circ \Pi_* \circ X \circ \sigma = X \circ \sigma.$$

Esto equivale a decir que $Im\sigma$ es X-invariante,

¹S. Grillo, E. Padrón, Journal of Geometry and Physics 110 (2016) 101–129.

Sea M una variedad, $X \in \mathfrak{X}(M)$ y $\Pi: M \to N$ una fibración. Diremos que una sección $\sigma: N \to M$ de Π es una **solución**¹ **de la** Π -HJE para (M,X) si

$$\sigma_* \circ \Pi_* \circ X \circ \sigma = X \circ \sigma.$$

Esto equivale a decir que $Im\sigma$ es X-invariante, y que

$$X^{\sigma} := \Pi_* \circ X \circ \sigma \in \mathfrak{X}(N)$$

está σ -relacionado con X,

¹S. Grillo, E. Padrón, Journal of Geometry and Physics 110 (2016) 101–129.

Sea M una variedad, $X \in \mathfrak{X}(M)$ y $\Pi : M \to N$ una fibración. Diremos que una sección $\sigma: N \to M$ de Π es una solución¹ de la Π -HJE para (M, X) si

$$\sigma_* \circ \Pi_* \circ X \circ \sigma = X \circ \sigma.$$

Esto equivale a decir que $Im\sigma$ es X-invariante, y que

$$X^{\sigma} := \Pi_* \circ X \circ \sigma \in \mathfrak{X}(N)$$

está σ -relacionado con X, i.e.

$$\sigma_* \circ X^{\sigma} = X \circ \sigma.$$

¹S. Grillo, E. Padrón, Journal of Geometry and Physics 110 (2016) 101–129.

Sea M una variedad, $X \in \mathfrak{X}(M)$ y $\Pi: M \to N$ una fibración. Diremos que una sección $\sigma: N \to M$ de Π es una **solución**¹ **de la** Π -HJE para (M,X) si

$$\sigma_* \circ \Pi_* \circ X \circ \sigma = X \circ \sigma.$$

Esto equivale a decir que $Im\sigma$ es X-invariante, y que

$$X^{\sigma} := \Pi_* \circ X \circ \sigma \in \mathfrak{X}(N)$$

está σ -relacionado con X, i.e.

$$\sigma_* \circ X^{\sigma} = X \circ \sigma.$$

En consecuencia, si hallamos $\gamma(t)$ trayectoria de X^{σ} ,

¹S. Grillo, E. Padrón, Journal of Geometry and Physics 110 (2016) 101-129.

Sea M una variedad, $X \in \mathfrak{X}(M)$ y $\Pi : M \to N$ una fibración. Diremos que una sección $\sigma: N \to M$ de Π es una solución¹ de la Π -HJE para (M, X) si

$$\sigma_* \circ \Pi_* \circ X \circ \sigma = X \circ \sigma.$$

Esto equivale a decir que $Im\sigma$ es X-invariante, y que

$$X^{\sigma} := \Pi_* \circ X \circ \sigma \in \mathfrak{X}(N)$$

está σ -relacionado con X, i.e.

$$\sigma_* \circ X^{\sigma} = X \circ \sigma.$$

En consecuencia, si hallamos $\gamma(t)$ trayectoria de X^{σ} , la curva $\sigma(\gamma(t))$ es trayectoria de X.

¹S. Grillo, E. Padrón, Journal of Geometry and Physics 110 (2016) 101–129.

Expresiones locales.

Expresiones locales. En coordenadas de M y N adaptadas a Π ,

Expresiones locales. En coordenadas de M y N adaptadas a Π , si escribimos $\sigma(n) = (n, \hat{\sigma}(n))$ y $X(m) = (m, \hat{X}(m))$,

Expresiones locales. En coordenadas de M y N adaptadas a Π , si escribimos $\sigma(n) = (n, \hat{\sigma}(n))$ y $X(m) = (m, \hat{X}(m))$, la Π -HJE para (M, X) se lee

$$\sum_{i=1}^{k} \hat{X}_{i}\left(n, \hat{\sigma}\left(n\right)\right) \frac{\partial \hat{\sigma}^{j}\left(n\right)}{\partial n_{i}} = \hat{X}_{k+j}\left(n, \hat{\sigma}\left(n\right)\right), \quad j = 1, ..., d-k,$$

siendo $d = \dim M$ y $k = \dim N$.

Expresiones locales. En coordenadas de M y N adaptadas a Π , si escribimos $\sigma\left(n\right)=\left(n,\hat{\sigma}\left(n\right)\right)$ y $X\left(m\right)=\left(m,\hat{X}\left(m\right)\right)$, la Π -HJE para $\left(M,X\right)$ se lee

$$\sum_{i=1}^{k} \hat{X}_{i}\left(n, \hat{\sigma}\left(n\right)\right) \frac{\partial \hat{\sigma}^{j}\left(n\right)}{\partial n_{i}} = \hat{X}_{k+j}\left(n, \hat{\sigma}\left(n\right)\right), \quad j = 1, ..., d-k,$$

siendo $d = \dim M$ y $k = \dim N$. Y dada un solución $\hat{\sigma}$ de la ecuación anterior,

Expresiones locales. En coordenadas de M y N adaptadas a Π , si escribimos $\sigma(n) = (n, \hat{\sigma}(n))$ y $X(m) = (m, \hat{X}(m))$, la Π -HJE para (M, X) se lee

$$\sum_{i=1}^{k} \hat{X}_{i}\left(n, \hat{\sigma}\left(n\right)\right) \frac{\partial \hat{\sigma}^{j}\left(n\right)}{\partial n_{i}} = \hat{X}_{k+j}\left(n, \hat{\sigma}\left(n\right)\right), \quad j = 1, ..., d-k,$$

siendo $d = \dim M$ y $k = \dim N$. Y dada un solución $\hat{\sigma}$ de la ecuación anterior, si hallamos n(t) tal que

$$\dot{n}_{i}(t) = \hat{X}_{i}(n(t), \hat{\sigma}(n(t))),$$

Expresiones locales. En coordenadas de M y N adaptadas a Π , si escribimos $\sigma(n) = (n, \hat{\sigma}(n))$ y $X(m) = (m, \hat{X}(m))$, la Π -HJE para (M, X) se lee

$$\sum_{i=1}^{k} \hat{X}_{i}\left(n, \hat{\sigma}\left(n\right)\right) \frac{\partial \hat{\sigma}^{j}\left(n\right)}{\partial n_{i}} = \hat{X}_{k+j}\left(n, \hat{\sigma}\left(n\right)\right), \quad j = 1, ..., d-k,$$

siendo $d = \dim M$ y $k = \dim N$. Y dada un solución $\hat{\sigma}$ de la ecuación anterior, si hallamos n(t) tal que

$$\dot{n}_{i}(t) = \hat{X}_{i}(n(t), \hat{\sigma}(n(t))),$$

luego $m(t) = (n(t), \hat{\sigma}(n(t)))$ es trayectoria de X.

Dada A, con dim $\Lambda = d - k =: I$,

Dada Λ, con dim $\Lambda = d - k =: I$, una función $\Sigma : N \times \Lambda \to M$ es una solución completa de la Π-HJE para (M, X) si:

Dada Λ , con dim $\Lambda = d - k =: I$, una función $\Sigma : N \times \Lambda \to M$ es una solución completa de la Π -HJE para (M,X) si: $\sigma_{\lambda} : N \to M : n \mapsto \sigma_{\lambda}(n) \coloneqq \Sigma(n,\lambda)$ es solución (parcial) de la Π -HJE para (M,X),

Dada Λ , con dim $\Lambda = d - k =: I$, una función $\Sigma : N \times \Lambda \to M$ es una solución completa de la Π -HJE para (M,X) si: $\sigma_{\lambda} : N \to M : n \mapsto \sigma_{\lambda}(n) := \Sigma(n,\lambda)$ es solución (parcial) de la Π -HJE para (M,X), Σ es sobreyectiva

Dada Λ , con dim $\Lambda = d - k =: I$, una función $\Sigma : N \times \Lambda \to M$ es una solución completa de la Π -HJE para (M,X) si: $\sigma_{\lambda} : N \to M : n \mapsto \sigma_{\lambda}(n) := \Sigma(n,\lambda)$ es solución (parcial) de la Π -HJE para (M,X), Σ es sobreyectiva y Σ es un difeo local.

Dada Λ , con dim $\Lambda = d - k =: I$, una función $\Sigma : N \times \Lambda \to M$ es una solución completa de la Π -HJE para (M, X) si: $\sigma_{\lambda} : N \to M : n \mapsto \sigma_{\lambda}(n) := \Sigma(n, \lambda)$ es solución (parcial) de la Π -HJE para (M, X), Σ es sobreyectiva y Σ es un difeo local.

Esto nos da, localmente, una foliación de M en subvariedades X-invariantes: Im σ_{λ} , $\lambda \in \Lambda$.

Dada Λ, con dim $\Lambda = d - k =: I$, una función $\Sigma : N \times \Lambda \to M$ es una solución completa de la Π-HJE para (M, X) si: $\sigma_{\lambda} : N \to M : n \mapsto \sigma_{\lambda}(n) \coloneqq \Sigma(n, \lambda)$ es solución (parcial) de la Π-HJE para (M, X), Σ es sobreyectiva y Σ es un difeo local.

Esto nos da, localmente, una foliación de M en subvariedades X-invariantes: $\operatorname{Im}\sigma_{\lambda},\ \lambda\in \varLambda$. Cada trayectoria de X puede escribirse a partir de una trayectoria $\gamma\left(t\right)$ de $X^{\sigma_{\lambda}}$, para algún $\lambda\in \varLambda$, como $\Sigma\left(\gamma\left(t\right),\lambda\right)=\sigma_{\lambda}\left(\gamma\left(t\right)\right)$.

Dada Λ , con dim $\Lambda = d - k =: I$, una función $\Sigma : N \times \Lambda \to M$ es una solución completa de la Π -HJE para (M,X) si: $\sigma_{\lambda} : N \to M : n \mapsto \sigma_{\lambda}(n) := \Sigma(n,\lambda)$ es solución (parcial) de la Π -HJE para (M,X), Σ es sobreyectiva y Σ es un difeo local.

Esto nos da, localmente, una foliación de M en subvariedades X-invariantes: ${\rm Im}\sigma_{\lambda},\ \lambda\in \Lambda.$ Cada trayectoria de X puede escribirse a partir de una trayectoria $\gamma(t)$ de $X^{\sigma_{\lambda}}$, para algún $\lambda\in \Lambda$, como $\Sigma(\gamma(t),\lambda)=\sigma_{\lambda}(\gamma(t))$. En términos locales, Σ define coordenadas $(n_1,...,n_k,\lambda_1,...,\lambda_l)$ de M en las cuales

$$X(n,\lambda) = \sum_{i=1}^{k} f_i(n,\lambda) \frac{\partial}{\partial n_i}.$$

Dada Λ , con dim $\Lambda = d - k =: I$, una función $\Sigma : N \times \Lambda \to M$ es una solución completa de la Π -HJE para (M,X) si: $\sigma_{\lambda} : N \to M : n \mapsto \sigma_{\lambda}(n) \coloneqq \Sigma(n,\lambda)$ es solución (parcial) de la Π -HJE para (M,X), Σ es sobreyectiva y Σ es un difeo local.

Esto nos da, localmente, una foliación de M en subvariedades X-invariantes: ${\rm Im}\sigma_{\lambda},\ \lambda\in \Lambda.$ Cada trayectoria de X puede escribirse a partir de una trayectoria $\gamma(t)$ de $X^{\sigma_{\lambda}}$, para algún $\lambda\in \Lambda$, como $\Sigma(\gamma(t),\lambda)=\sigma_{\lambda}(\gamma(t))$. En términos locales, Σ define coordenadas $(n_1,...,n_k,\lambda_1,...,\lambda_l)$ de M en las cuales

$$X(n,\lambda) = \sum_{i=1}^{k} f_i(n,\lambda) \frac{\partial}{\partial n_i}.$$

Por ende, las ecuaciones de movimiento en ellas se leen

$$\dot{n}_{i}(t) = f_{i}(n(t), \lambda(t)), \quad \dot{\lambda}_{i}(t) = 0.$$

$$p_N: N \times \Lambda \to N \ y \ p_\Lambda: N \times \Lambda \to \Lambda,$$

$$p_N: N \times \Lambda \to N \ y \ p_\Lambda: N \times \Lambda \to \Lambda,$$

puede verse que un difeo local sobreyectivo Σ es solución completa de la Π -HJE para (M,X) si y sólo si

$$p_N: N \times \Lambda \to N \ y \ p_\Lambda: N \times \Lambda \to \Lambda$$
,

puede verse que un difeo local sobreyectivo Σ es solución completa de la Π -HJE para (M,X) si y sólo si

$$\Pi \circ \Sigma = p_N \ y \ \Sigma_* \circ X^{\Sigma} = X \circ \Sigma,$$

$$p_N: N \times \Lambda \to N \ y \ p_\Lambda: N \times \Lambda \to \Lambda,$$

puede verse que un difeo local sobreyectivo Σ es solución completa de la Π -HJE para (M,X) si y sólo si

$$\Pi \circ \Sigma = p_N \ \ y \ \ \Sigma_* \circ X^{\Sigma} = X \circ \Sigma,$$

donde $X^{\Sigma} \in \mathfrak{X}(N \times \Lambda)$ es el único campo que cumple

$$(p_{\Lambda})_* \circ X^{\Sigma} = 0 \ y \ (p_{N})_* \circ X^{\Sigma} = \Pi_* \circ X \circ \Sigma.$$

$$p_N: N \times \Lambda \to N \ y \ p_\Lambda: N \times \Lambda \to \Lambda,$$

puede verse que un difeo local sobreyectivo Σ es solución completa de la Π -HJE para (M,X) si y sólo si

$$\Pi \circ \Sigma = p_N \ \ y \ \ \Sigma_* \circ X^{\Sigma} = X \circ \Sigma,$$

donde $X^{\Sigma} \in \mathfrak{X}(N \times \Lambda)$ es el único campo que cumple

$$(p_{\Lambda})_* \circ X^{\Sigma} = 0 \quad y \quad (p_{N})_* \circ X^{\Sigma} = \Pi_* \circ X \circ \Sigma.$$

En otras palabras,

$$X^{\Sigma}(n,\lambda) = (X^{\sigma_{\lambda}}(n),0) \in T_{n}N \times T_{\lambda}\Lambda.$$

Sea (M, ω) una variedad simpléctica, $H: M \to \mathbb{R}$ una función y X_H su campo Hamiltoniano asociado.

Sea (M,ω) una variedad simpléctica, $H:M\to\mathbb{R}$ una función y X_H su campo Hamiltoniano asociado. Fijemos también una fibración $\Pi:M\to N$.

Sea (M,ω) una variedad simpléctica, $H:M\to\mathbb{R}$ una función y X_H su campo Hamiltoniano asociado. Fijemos también una fibración $\Pi:M\to N$.

Es fácil ver que, dada \varLambda como arriba, un difeo local surjectivo Σ es solución completa si y sólo si

Sea (M, ω) una variedad simpléctica, $H: M \to \mathbb{R}$ una función y X_H su campo Hamiltoniano asociado. Fijemos también una fibración $\Pi: M \to N$.

Es fácil ver que, dada Λ como arriba, un difeo local surjectivo Σ es solución completa si y sólo si $\Pi\circ\Sigma=p_N$ y

$$d(H\circ\Sigma)=\mathfrak{i}_{X_H^\Sigma}\Sigma^*\omega,$$

Sea (M, ω) una variedad simpléctica, $H: M \to \mathbb{R}$ una función y X_H su campo Hamiltoniano asociado. Fijemos también una fibración $\Pi: M \to N$.

Es fácil ver que, dada Λ como arriba, un difeo local surjectivo Σ es solución completa si y sólo si $\Pi\circ\Sigma=p_N$ y

$$d(H\circ\Sigma)=\mathfrak{i}_{X_H^\Sigma}\Sigma^*\omega,$$

lo cual implica que

$$d(H \circ \sigma_{\lambda}) = i_{X_H^{\sigma_{\lambda}}} \sigma_{\lambda}^* \omega, \quad \forall \lambda \in \Lambda.$$

Sea (M, ω) una variedad simpléctica, $H: M \to \mathbb{R}$ una función y X_H su campo Hamiltoniano asociado. Fijemos también una fibración $\Pi: M \to N$.

Es fácil ver que, dada Λ como arriba, un difeo local surjectivo Σ es solución completa si y sólo si $\Pi\circ\Sigma=p_N$ y

$$d(H\circ\Sigma)=\mathfrak{i}_{X_H^\Sigma}\Sigma^*\omega,$$

lo cual implica que

$$d(H \circ \sigma_{\lambda}) = i_{X_H^{\sigma_{\lambda}}} \sigma_{\lambda}^* \omega, \quad \forall \lambda \in \Lambda.$$

Luego, Σ es un simplectomorfismo entre $(N \times \Lambda, \Sigma^* \omega)$ y (M, ω) ,

Sea (M, ω) una variedad simpléctica, $H: M \to \mathbb{R}$ una función y X_H su campo Hamiltoniano asociado. Fijemos también una fibración $\Pi: M \to N$.

Es fácil ver que, dada Λ como arriba, un difeo local surjectivo Σ es solución completa si y sólo si $\Pi\circ\Sigma=p_N$ y

$$d(H\circ\Sigma)=\mathfrak{i}_{X_H^\Sigma}\Sigma^*\omega,$$

lo cual implica que

$$d(H \circ \sigma_{\lambda}) = \mathfrak{i}_{X_{H}^{\sigma_{\lambda}}} \sigma_{\lambda}^{*} \omega, \quad \forall \lambda \in \Lambda.$$

Luego, Σ es un simplectomorfismo entre $(N \times \Lambda, \Sigma^* \omega)$ y (M, ω) , y $X_H^{\Sigma} \in \mathfrak{X}(N \times \Lambda)$ es un campo Hamiltoniano con función $H \circ \Sigma$.

Diremos que Σ es isotrópica si $\sigma_{\lambda}^*\omega=$ 0, $\forall \lambda\in \varLambda.$

Diremos que Σ es isotrópica si $\sigma_{\lambda}^*\omega=0$, $\forall \lambda\in \Lambda.$

Si
$$M=T^*Q$$
, $\omega=\omega_Q$ y $\Pi=\pi_Q:T^*Q o Q$,

Diremos que Σ es isotrópica si $\sigma_{\lambda}^*\omega=$ 0, $\forall \lambda\in \Lambda.$

Si $M=T^*Q$, $\omega=\omega_Q$ y $\Pi=\pi_Q:T^*Q\to Q$, las soluciones isotrópicas están dadas por formas $\sigma_\lambda\in\Omega^1\left(Q\right)$ tales que

Diremos que Σ es isotrópica si $\sigma_{\lambda}^*\omega=$ 0, $\forall \lambda\in \Lambda.$

Si $M=T^*Q$, $\omega=\omega_Q$ y $\Pi=\pi_Q:T^*Q\to Q$, las soluciones isotrópicas están dadas por formas $\sigma_\lambda\in\Omega^1\left(Q\right)$ tales que

$$d(H \circ \sigma_{\lambda}) = 0$$
 y $d\sigma_{\lambda} = 0$:

las soluciones clásicas.

Diremos que Σ es **isotrópica** si $\sigma_{\lambda}^*\omega = 0$, $\forall \lambda \in \Lambda$.

Si $M=T^*Q$, $\omega=\omega_Q$ y $\Pi=\pi_Q:T^*Q\to Q$, las soluciones isotrópicas están dadas por formas $\sigma_\lambda\in\Omega^1\left(Q\right)$ tales que

$$d(H \circ \sigma_{\lambda}) = 0$$
 y $d\sigma_{\lambda} = 0$:

las soluciones clásicas.

Volvamos a la situación general, con (M, ω) , H y Π arbitrarios.

Diremos que Σ es isotrópica si $\sigma_{\lambda}^*\omega=$ 0, $\forall \lambda\in \Lambda.$

Si $M=T^*Q$, $\omega=\omega_Q$ y $\Pi=\pi_Q:T^*Q\to Q$, las soluciones isotrópicas están dadas por formas $\sigma_\lambda\in\Omega^1\left(Q\right)$ tales que

$$d(H \circ \sigma_{\lambda}) = 0$$
 y $d\sigma_{\lambda} = 0$:

las soluciones clásicas.

Volvamos a la situación general, con (M, ω) , H y Π arbitrarios.

Teorema

Si conocemos una solución isotrópica Σ , luego podemos integrar (M, X_H) a menos de cuadraturas

Diremos que Σ es isotrópica si $\sigma_{\lambda}^*\omega=$ 0, $\forall \lambda\in \Lambda.$

Si $M=T^*Q$, $\omega=\omega_Q$ y $\Pi=\pi_Q:T^*Q\to Q$, las soluciones isotrópicas están dadas por formas $\sigma_\lambda\in\Omega^1\left(Q\right)$ tales que

$$d(H \circ \sigma_{\lambda}) = 0$$
 y $d\sigma_{\lambda} = 0$:

las soluciones clásicas.

Volvamos a la situación general, con (M, ω) , H y Π arbitrarios.

Teorema

Si conocemos una solución isotrópica Σ , luego podemos integrar (M, X_H) a menos de cuadraturas (i.e. encontrar las trayectorias explícitamente, a menos de inversas y primitivas de funciones conocidas).

Si $\omega = -d\theta$ y N es conexo y simplemente conexo,

Si $\omega = -d\theta$ y N es conexo y simplemente conexo, existen funciones $W: \mathbb{N} \times \Lambda \to \mathbb{R}$ y $h: \Lambda \to \mathbb{R}$ tales que

$$L_{X_H^{\Sigma}}(dW-\Sigma^*\theta)=p_{\Lambda}^*dh.$$

Si $\omega = -d\theta$ y N es conexo y simplemente conexo, existen funciones $W: \mathbb{N} \times \Lambda \to \mathbb{R}$ y $h: \Lambda \to \mathbb{R}$ tales que

$$L_{X_H^{\Sigma}}(dW-\Sigma^*\theta)=p_{\Lambda}^*dh.$$

Lema 2

La función $\varphi: \mathbb{N} \times \mathbb{\Lambda} \to T^*\mathbb{\Lambda}$ tal que

$$\left\langle \varphi\left(n,\lambda\right),z\right\rangle \coloneqq\left\langle \left(dW-\Sigma^{*}\theta\right)\left(n,\lambda\right),\left(0,z\right)\right\rangle ,\ \forall z\in\mathcal{T}_{\lambda}\Lambda,$$

es una inmersión.

Si $\omega = -d\theta$ y N es conexo y simplemente conexo, existen funciones $W: \mathbb{N} \times \Lambda \to \mathbb{R}$ y $h: \Lambda \to \mathbb{R}$ tales que

$$L_{X_H^{\Sigma}}(dW-\Sigma^*\theta)=p_{\Lambda}^*dh.$$

Lema 2

La función $\varphi: \mathbb{N} \times \mathbb{\Lambda} \to T^*\mathbb{\Lambda}$ tal que

$$\left\langle \varphi\left(n,\lambda\right),z\right\rangle \coloneqq\left\langle \left(dW-\Sigma^{*}\theta\right)\left(n,\lambda\right),\left(0,z\right)\right\rangle ,\ \forall z\in\mathcal{T}_{\lambda}\Lambda,$$

es una inmersión. (Es un difeo local si dim $N = \dim \Lambda$.)

Si $\omega = -d\theta$ y N es conexo y simplemente conexo, existen funciones $W: \mathbb{N} \times \Lambda \to \mathbb{R}$ y $h: \Lambda \to \mathbb{R}$ tales que

$$L_{X_H^{\Sigma}}(dW-\Sigma^*\theta)=p_{\Lambda}^*dh.$$

Lema 2

La función $\varphi: \mathbb{N} \times \mathbb{\Lambda} \to T^*\mathbb{\Lambda}$ tal que

$$\langle \varphi(n,\lambda),z\rangle \coloneqq \langle (dW-\Sigma^*\theta)(n,\lambda),(0,z)\rangle, \quad \forall z\in T_\lambda\Lambda,$$

es una inmersión. (Es un difeo local si dim $N = \dim \Lambda$.)

Lema 3

Dado $\lambda \in \Lambda$, una curva $\gamma : I \to N$ es curva integral de $X^{\sigma_{\lambda}}$ si y sólo si,

Si $\omega = -d\theta$ y N es conexo y simplemente conexo, existen funciones $W: \mathbb{N} \times \Lambda \to \mathbb{R}$ y $h: \Lambda \to \mathbb{R}$ tales que

$$L_{X_H^{\Sigma}}(dW - \Sigma^*\theta) = p_{\Lambda}^*dh.$$

Lema 2

La función $\varphi: \mathbb{N} \times \mathbb{\Lambda} \to T^*\mathbb{\Lambda}$ tal que

$$\langle \varphi(n,\lambda),z\rangle := \langle (dW - \Sigma^*\theta)(n,\lambda),(0,z)\rangle, \quad \forall z \in T_\lambda \Lambda,$$

es una inmersión. (Es un difeo local si dim $N = \dim \Lambda$.)

Lema 3

Dado $\lambda \in \Lambda$, una curva $\gamma : I \to N$ es curva integral de $X^{\sigma_{\lambda}}$ si y sólo si, para algún $t_0 \in I$, se tiene que

$$\varphi(\gamma(t),\lambda) = \varphi(\gamma(t_0),\lambda) + (t-t_0) dh(\lambda).$$

Si además dim $N=\dim \Lambda$ y Π es Lagrangiano (i.e. $\ker \Pi_*=(\ker \Pi_*)^\perp$),

Si además dim $N=\dim\Lambda$ y Π es Lagrangiano (i.e. $\ker\Pi_*=(\ker\Pi_*)^\perp$), luego φ define un simplectomorfismo entre (M,ω) y $(T^*\Lambda,\omega_\Lambda)$ que relaciona X_H con $X_{h\circ\pi_\Lambda}$,

Si además dim $N=\dim \Lambda$ y Π es Lagrangiano (i.e. $\ker \Pi_*=(\ker \Pi_*)^\perp$), luego φ define un simplectomorfismo entre (M,ω) y $(T^*\Lambda,\omega_\Lambda)$ que relaciona X_H con $X_{h\circ\pi_\Lambda}$, siendo $\pi_\Lambda:T^*\Lambda\to\Lambda$ la proyección canónica.

Si ahora tenemos una variedad de Poisson (M,Ξ) , una función H, una fibración Π y una solución completa Σ tal que

Si ahora tenemos una variedad de Poisson (M,Ξ) , una función H, una fibración Π y una solución completa Σ tal que

$$\operatorname{Im}(\sigma_{\lambda})_{*}\cap\operatorname{Im}\Xi^{\sharp}\subseteq\Xi^{\sharp}\left[\operatorname{Im}(\sigma_{\lambda})_{*}\right]^{0},\ \ \forall\lambda\in\varLambda,$$

Si ahora tenemos una variedad de Poisson (M,Ξ) , una función H, una fibración Π y una solución completa Σ tal que

$$\operatorname{Im}(\sigma_{\lambda})_{*} \cap \operatorname{Im}\Xi^{\sharp} \subseteq \Xi^{\sharp} \left[\operatorname{Im}(\sigma_{\lambda})_{*}\right]^{0}, \ \forall \lambda \in \Lambda,$$

podemos proceder como antes sobre cada hoja simpléctica de M.

GRACIAS!

Demostración del Lema 1

Demostración del Lema 1

Queremos ver que existen $W: N \times \Lambda \to \mathbb{R}$ y $h: \Lambda \to \mathbb{R}$ tales que

$$L_{X_H^{\Sigma}}(dW-\Sigma^*\theta)=p_{\Lambda}^*dh.$$

Demostración del Lema 1

Queremos ver que existen $W: N \times \Lambda \to \mathbb{R}$ y $h: \Lambda \to \mathbb{R}$ tales que

$$L_{X_H^{\Sigma}}(dW - \Sigma^*\theta) = p_{\Lambda}^*dh.$$

Si Σ es solución completa, luego $d\left(H\circ\sigma_{\lambda}\right)=\mathfrak{i}_{\chi_{\mu}^{\sigma_{\lambda}}}\sigma_{\lambda}^{*}\omega$, $\forall\lambda\in\Lambda$.

Queremos ver que existen $W: N \times \Lambda \to \mathbb{R}$ y $h: \Lambda \to \mathbb{R}$ tales que

$$L_{X_H^{\Sigma}}(dW - \Sigma^*\theta) = p_{\Lambda}^*dh.$$

Si Σ es solución completa, luego $d\left(H\circ\sigma_{\lambda}\right)=\mathfrak{i}_{X_{H}^{\sigma_{\lambda}}}\sigma_{\lambda}^{*}\omega,\ \forall\lambda\in\Lambda.$ La condición de isotropía $\sigma_{\lambda}^{*}\omega=0$ asegura que:

$$d\left(H\circ\sigma_{\lambda}\right)=0,$$

Queremos ver que existen $W: N \times \Lambda \to \mathbb{R}$ y $h: \Lambda \to \mathbb{R}$ tales que

$$L_{X_H^{\Sigma}}(dW-\Sigma^*\theta)=p_{\Lambda}^*dh.$$

Si Σ es solución completa, luego $d\left(H\circ\sigma_{\lambda}\right)=\mathfrak{i}_{X_{H}^{\sigma_{\lambda}}}\sigma_{\lambda}^{*}\omega$, $\forall\lambda\in\Lambda$. La condición de isotropía $\sigma_{\lambda}^{*}\omega=0$ asegura que:

▶ $d(H \circ \sigma_{\lambda}) = 0$, y como N es **conexo**,

Queremos ver que existen $W: N \times \Lambda \to \mathbb{R}$ y $h: \Lambda \to \mathbb{R}$ tales que

$$L_{X_H^{\Sigma}}(dW-\Sigma^*\theta)=p_{\Lambda}^*dh.$$

Si Σ es solución completa, luego $d\left(H\circ\sigma_{\lambda}\right)=\mathfrak{i}_{X_{H}^{\sigma_{\lambda}}}\sigma_{\lambda}^{*}\omega$, $\forall\lambda\in\Lambda$. La condición de isotropía $\sigma_{\lambda}^{*}\omega=0$ asegura que:

- ▶ $d(H \circ \sigma_{\lambda}) = 0$, y como N es **conexo**,
 - 1. luego $H \circ \sigma_{\lambda} = \text{cte}$,

Queremos ver que existen $W: N \times \Lambda \to \mathbb{R}$ y $h: \Lambda \to \mathbb{R}$ tales que

$$L_{X_H^{\Sigma}}(dW - \Sigma^*\theta) = p_{\Lambda}^*dh.$$

Si Σ es solución completa, luego $d\left(H\circ\sigma_{\lambda}\right)=\mathfrak{i}_{X_{H}^{\sigma_{\lambda}}}\sigma_{\lambda}^{*}\omega,\ \forall\lambda\in\Lambda.$ La condición de isotropía $\sigma_{\lambda}^{*}\omega=0$ asegura que:

- ▶ $d(H \circ \sigma_{\lambda}) = 0$, y como N es **conexo**,
 - 1. luego $H \circ \sigma_{\lambda} = \text{cte}$,
 - 2. luego existe $h: \Lambda \to \mathbb{R}$ tal que $H \circ \Sigma = h \circ p_{\Lambda}$,

Queremos ver que existen $W: N \times \Lambda \to \mathbb{R}$ y $h: \Lambda \to \mathbb{R}$ tales que

$$L_{X_H^{\Sigma}}(dW - \Sigma^*\theta) = p_{\Lambda}^*dh.$$

Si Σ es solución completa, luego $d\left(H\circ\sigma_{\lambda}\right)=\mathfrak{i}_{X_{H}^{\sigma_{\lambda}}}\sigma_{\lambda}^{*}\omega$, $\forall\lambda\in\Lambda$. La condición de isotropía $\sigma_{\lambda}^{*}\omega=0$ asegura que:

- ▶ $d(H \circ \sigma_{\lambda}) = 0$, y como N es **conexo**,
 - 1. luego $H \circ \sigma_{\lambda} = \text{cte}$,
 - 2. luego existe $h: \Lambda \to \mathbb{R}$ tal que $H \circ \Sigma = h \circ p_{\Lambda}$,
 - 3. luego $d(H \circ \Sigma) = p_{\Lambda}^* dh$;

Queremos ver que existen $W: N \times \Lambda \to \mathbb{R}$ y $h: \Lambda \to \mathbb{R}$ tales que

$$L_{X^{\Sigma}_{H}}(dW - \Sigma^{*}\theta) = p^{*}_{\Lambda}dh.$$

Si Σ es solución completa, luego $d\left(H\circ\sigma_{\lambda}\right)=\mathfrak{i}_{X_{H}^{\sigma_{\lambda}}}\sigma_{\lambda}^{*}\omega,\ \forall\lambda\in\Lambda.$ La condición de isotropía $\sigma_{\lambda}^{*}\omega=0$ asegura que:

- ▶ $d(H \circ \sigma_{\lambda}) = 0$, y como N es **conexo**,
 - 1. luego $H \circ \sigma_{\lambda} = \text{cte}$,
 - 2. luego existe $h: \Lambda \to \mathbb{R}$ tal que $H \circ \Sigma = h \circ p_{\Lambda}$,
 - 3. luego $d(H \circ \Sigma) = p_{\Lambda}^* dh$;
- $d\left(\sigma_{\lambda}^{*}\theta\right)=0$, ya que $\omega=-d\theta$,

Queremos ver que existen $W: N \times \Lambda \to \mathbb{R}$ y $h: \Lambda \to \mathbb{R}$ tales que

$$L_{X^{\Sigma}_{H}}(dW - \Sigma^{*}\theta) = p^{*}_{\Lambda}dh.$$

Si Σ es solución completa, luego $d\left(H\circ\sigma_{\lambda}\right)=\mathfrak{i}_{X_{H}^{\sigma_{\lambda}}}\sigma_{\lambda}^{*}\omega,\ \forall\lambda\in\Lambda.$ La condición de isotropía $\sigma_{\lambda}^{*}\omega=0$ asegura que:

- ▶ $d(H \circ \sigma_{\lambda}) = 0$, y como N es **conexo**,
 - 1. luego $H \circ \sigma_{\lambda} = \text{cte}$,
 - 2. luego existe $h: \Lambda \to \mathbb{R}$ tal que $H \circ \Sigma = h \circ p_{\Lambda}$,
 - 3. luego $d(H \circ \Sigma) = p_{\Lambda}^* dh$;
- $d\left(\sigma_{\lambda}^{*}\theta\right)=0$, ya que $\omega=-d\theta$, y como N es simplemente conexo,

Queremos ver que existen $W: N \times \Lambda \to \mathbb{R}$ y $h: \Lambda \to \mathbb{R}$ tales que

$$L_{X_H^{\Sigma}}(dW - \Sigma^*\theta) = p_{\Lambda}^*dh.$$

Si Σ es solución completa, luego $d\left(H\circ\sigma_{\lambda}\right)=\mathfrak{i}_{X_{H}^{\sigma_{\lambda}}}\sigma_{\lambda}^{*}\omega$, $\forall\lambda\in\Lambda$. La condición de isotropía $\sigma_{\lambda}^{*}\omega=0$ asegura que:

- ▶ $d(H \circ \sigma_{\lambda}) = 0$, y como N es **conexo**,
 - 1. luego $H \circ \sigma_{\lambda} = \text{cte}$,
 - 2. luego existe $h: \Lambda \to \mathbb{R}$ tal que $H \circ \Sigma = h \circ p_{\Lambda}$,
 - 3. luego $d(H \circ \Sigma) = p_{\Lambda}^* dh$;
- ▶ $d\left(\sigma_{\lambda}^{*}\theta\right)=0$, ya que $\omega=-d\theta$, y como N es simplemente conexo,
 - 1. luego existe $W_{\lambda}: N \to \mathbb{R}$ tal que $\sigma_{\lambda}^* \theta = dW_{\lambda}$,

Queremos ver que existen $W: N \times \Lambda \to \mathbb{R}$ y $h: \Lambda \to \mathbb{R}$ tales que

$$L_{X_H^{\Sigma}}(dW - \Sigma^*\theta) = p_{\Lambda}^*dh.$$

Si Σ es solución completa, luego $d\left(H\circ\sigma_{\lambda}\right)=\mathfrak{i}_{X_{H}^{\sigma_{\lambda}}}\sigma_{\lambda}^{*}\omega$, $\forall\lambda\in\Lambda$. La condición de isotropía $\sigma_{\lambda}^{*}\omega=0$ asegura que:

- ▶ $d(H \circ \sigma_{\lambda}) = 0$, y como N es **conexo**,
 - 1. luego $H \circ \sigma_{\lambda} = \text{cte}$,
 - 2. luego existe $h: \Lambda \to \mathbb{R}$ tal que $H \circ \Sigma = h \circ p_{\Lambda}$,
 - 3. luego $d(H \circ \Sigma) = p_{\Lambda}^* dh$;
- ▶ $d\left(\sigma_{\lambda}^{*}\theta\right)=0$, ya que $\omega=-d\theta$, y como N es simplemente conexo,
 - 1. luego existe $W_{\lambda}: N \to \mathbb{R}$ tal que $\sigma_{\lambda}^* \theta = dW_{\lambda}$,
 - 2. luego existe $W: N \times \Lambda \rightarrow \mathbb{R}$ tal que

$$(dW - \Sigma^* \theta)|_{TN \times 0} = 0.$$

$$\mathfrak{i}_{X_H^{\Sigma}}(dW-\Sigma^*\theta)=0.$$

$$\mathfrak{i}_{X_H^{\Sigma}}(dW-\Sigma^*\theta)=0.$$

Como una solución completa Σ cumple

$$d(H\circ\Sigma)=\mathfrak{i}_{X_H^\Sigma}\Sigma^*\omega,$$

$$\mathfrak{i}_{X_H^{\Sigma}}(dW-\Sigma^*\theta)=0.$$

Como una solución completa Σ cumple

$$d(H\circ\Sigma)=\mathfrak{i}_{X_H^\Sigma}\Sigma^*\omega,$$

lo visto hasta aquí, junto con la identidad $L_{X^\Sigma_H}=\mathfrak{i}_{X^\Sigma_H}\circ d+d\circ\mathfrak{i}_{X^\Sigma_H},$

$$\mathfrak{i}_{X_H^{\Sigma}}(dW-\Sigma^*\theta)=0.$$

Como una solución completa Σ cumple

$$d(H\circ\Sigma)=\mathfrak{i}_{X_H^\Sigma}\Sigma^*\omega,$$

lo visto hasta aquí, junto con la identidad $L_{X_H^\Sigma}=\mathfrak{i}_{X_H^\Sigma}\circ d+d\circ\mathfrak{i}_{X_H^\Sigma}$, implica que

$$p_{\Lambda}^{*}dh=\mathfrak{i}_{X_{H}^{\Sigma}}d\left(-\Sigma^{*}\theta\right)=\mathfrak{i}_{X_{H}^{\Sigma}}d\left(dW-\Sigma^{*}\theta\right)=L_{X_{H}^{\Sigma}}\left(dW-\Sigma^{*}\theta\right),$$

$$\mathfrak{i}_{X_H^{\Sigma}}(dW-\Sigma^*\theta)=0.$$

Como una solución completa Σ cumple

$$d(H\circ\Sigma)=\mathfrak{i}_{X_H^\Sigma}\Sigma^*\omega,$$

lo visto hasta aquí, junto con la identidad $L_{X_H^\Sigma}=\mathfrak{i}_{X_H^\Sigma}\circ d+d\circ\mathfrak{i}_{X_H^\Sigma}$, implica que

$$p_{\Lambda}^{*}dh = i_{X_{H}^{\Sigma}}d\left(-\Sigma^{*}\theta\right) = i_{X_{H}^{\Sigma}}d\left(dW - \Sigma^{*}\theta\right) = L_{X_{H}^{\Sigma}}\left(dW - \Sigma^{*}\theta\right),$$

como queríamos probar.

Queremos ver que

$$\varphi\left(\gamma\left(t\right),\lambda\right)=\varphi\left(\gamma\left(t_{0}\right),\lambda\right)+\left(t-t_{0}\right)\,dh\left(\lambda\right),$$

Queremos ver que

$$\varphi(\gamma(t),\lambda) = \varphi(\gamma(t_0),\lambda) + (t-t_0) dh(\lambda),$$

para toda curva integral $(\gamma(t), \lambda)$ de X_H^{Σ} .

Queremos ver que

$$\varphi(\gamma(t),\lambda) = \varphi(\gamma(t_0),\lambda) + (t-t_0) dh(\lambda),$$

Queremos ver que

$$\varphi(\gamma(t),\lambda) = \varphi(\gamma(t_0),\lambda) + (t-t_0) dh(\lambda),$$

$$\frac{d}{dt}\left\langle \varphi\left(\gamma\left(t\right),\lambda\right),Z\left(\lambda\right)\right\rangle \ = \ L_{X_{H}^{\Sigma}}\left\langle dW-\Sigma^{*}\theta,Z\right\rangle \Big|_{\left(\gamma\left(t\right),\lambda\right)}$$

Queremos ver que

$$\varphi(\gamma(t),\lambda) = \varphi(\gamma(t_0),\lambda) + (t-t_0) dh(\lambda),$$

$$\begin{array}{lcl} \frac{d}{dt} \left\langle \varphi \left(\gamma \left(t \right), \lambda \right), Z \left(\lambda \right) \right\rangle & = & L_{X_{H}^{\Sigma}} \left\langle dW - \Sigma^{*}\theta, Z \right\rangle \bigg|_{\left(\gamma \left(t \right), \lambda \right)} \\ & = & L_{X_{H}^{\Sigma}} \circ \mathfrak{i}_{Z} \left(dW - \Sigma^{*}\theta \right) \bigg|_{\left(\gamma \left(t \right), \lambda \right)} \end{array}$$

Queremos ver que

$$\varphi(\gamma(t),\lambda) = \varphi(\gamma(t_0),\lambda) + (t-t_0) dh(\lambda),$$

$$\begin{array}{lcl} \frac{d}{dt} \left\langle \varphi \left(\gamma \left(t \right), \lambda \right), Z \left(\lambda \right) \right\rangle & = & L_{X_{H}^{\Sigma}} \left\langle dW - \Sigma^{*}\theta, Z \right\rangle \bigg|_{\left(\gamma \left(t \right), \lambda \right)} \\ & = & L_{X_{H}^{\Sigma}} \circ \mathfrak{i}_{Z} \left(dW - \Sigma^{*}\theta \right) \bigg|_{\left(\gamma \left(t \right), \lambda \right)} \\ & = & \mathfrak{i}_{Z} \circ L_{X_{H}^{\Sigma}} \left(dW - \Sigma^{*}\theta \right) \bigg|_{\left(\gamma \left(t \right), \lambda \right)} \end{array}$$

Queremos ver que

$$\varphi(\gamma(t),\lambda) = \varphi(\gamma(t_0),\lambda) + (t-t_0) dh(\lambda),$$

$$\begin{array}{lcl} \frac{d}{dt} \left\langle \varphi \left(\gamma \left(t \right), \lambda \right), Z \left(\lambda \right) \right\rangle & = & L_{X_{H}^{\Sigma}} \left\langle dW - \Sigma^{*}\theta, Z \right\rangle \Big|_{(\gamma(t), \lambda)} \\ & = & L_{X_{H}^{\Sigma}} \circ \mathfrak{i}_{Z} \left(dW - \Sigma^{*}\theta \right) \Big|_{(\gamma(t), \lambda)} \\ & = & \mathfrak{i}_{Z} \circ L_{X_{H}^{\Sigma}} \left(dW - \Sigma^{*}\theta \right) \Big|_{(\gamma(t), \lambda)} \\ & = & \mathfrak{i}_{Z} \left(\rho_{\Lambda}^{*}dh \right) \Big|_{(\gamma(t), \lambda)} \end{array}$$

Queremos ver que

$$\varphi(\gamma(t),\lambda) = \varphi(\gamma(t_0),\lambda) + (t-t_0) dh(\lambda),$$

$$\begin{array}{lll} \frac{d}{dt} \left\langle \varphi \left(\gamma \left(t \right), \lambda \right), Z \left(\lambda \right) \right\rangle & = & L_{X_{H}^{\Sigma}} \left\langle dW - \Sigma^{*}\theta, Z \right\rangle \Big|_{(\gamma(t), \lambda)} \\ & = & L_{X_{H}^{\Sigma}} \circ \mathfrak{i}_{Z} \left(dW - \Sigma^{*}\theta \right) \Big|_{(\gamma(t), \lambda)} \\ & = & \mathfrak{i}_{Z} \circ L_{X_{H}^{\Sigma}} \left(dW - \Sigma^{*}\theta \right) \Big|_{(\gamma(t), \lambda)} \\ & = & \mathfrak{i}_{Z} \left(\rho_{\Lambda}^{*}dh \right) \Big|_{(\gamma(t), \lambda)} \\ & = & \left\langle dh \left(\lambda \right), Z \left(\lambda \right) \right\rangle \end{array}$$

Queremos ver que

$$\varphi(\gamma(t),\lambda) = \varphi(\gamma(t_0),\lambda) + (t-t_0) dh(\lambda),$$

para toda curva integral $(\gamma(t), \lambda)$ de X_H^{Σ} . Pero, de la definición de φ , para todo campo $Z \in \mathfrak{X}(\Lambda)$,

$$\begin{array}{lll} \frac{d}{dt} \left\langle \varphi \left(\gamma \left(t \right), \lambda \right), Z \left(\lambda \right) \right\rangle & = & L_{X_{H}^{\Sigma}} \left\langle dW - \Sigma^{*}\theta, Z \right\rangle \Big|_{(\gamma(t), \lambda)} \\ & = & L_{X_{H}^{\Sigma}} \circ \mathfrak{i}_{Z} \left(dW - \Sigma^{*}\theta \right) \Big|_{(\gamma(t), \lambda)} \\ & = & \mathfrak{i}_{Z} \circ L_{X_{H}^{\Sigma}} \left(dW - \Sigma^{*}\theta \right) \Big|_{(\gamma(t), \lambda)} \\ & = & \mathfrak{i}_{Z} \left(p_{\Lambda}^{*}dh \right) \Big|_{(\gamma(t), \lambda)} \\ & = & \left\langle dh \left(\lambda \right), Z \left(\lambda \right) \right\rangle \end{array}$$

de donde se deduce lo buscado.