# El problema inverso del cálculo de variaciones para sistemas discretos

Sebastián J. Ferraro

en colaboración con María Barbero-Liñán, Marta Farré Puiggalí y David Martín de Diego

Mar del Plata, 28 de Septiembre de 2017

## Some standard notation

Q configuration space, dim Q = n, with local coordinates  $(q^i)$ .

 $au_Q \colon TQ \to Q$ , with local coordinates  $(q^i, \dot{q}^i)$ .

 $\pi_Q \colon T^*Q \to Q$ , with local coordinates  $(q^i, p_i)$ .

We want to consider the inverse problem for:

- Continuous systems
  - Explicit
  - Implicit
  - Constrained
- Discrete systems
  - Explicit
  - Implicit
  - Constrained

## Inverse problem — continuous setting

Classical inverse problem of the calculus of variations: determining whether a given system of explicit second order differential equations (SODE)

$$\ddot{q}^i = \Gamma^i(q^j, \dot{q}^j), \quad i, j = 1, \dots, n$$

is equivalent (same solutions) to a system of Euler-Lagrange equations

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}^i} - \frac{\partial L}{\partial q^i} = 0\,,$$

for a regular Lagrangian  $L(q,\dot{q})$  to be determined. In that case we say that the SODE is variational.

A SODE  $\Gamma$  on TQ is a vector field  $\Gamma \in \mathfrak{X}(TQ)$  such that

$$T\tau_Q(\Gamma(v_q)) = v_q$$
 for all  $v_q \in T_qQ$ .



$$\text{Locally, } \Gamma = \dot{q}^i \frac{\partial}{\partial q^i} + \Gamma^i(q,\dot{q}) \frac{\partial}{\partial \dot{q}^i}, \text{ or } \Gamma(q^i,\dot{q}^i) = (q^i,\dot{q}^i,\dot{q}^i,\Gamma^i(q,\dot{q})).$$

The integral curves of  $\boldsymbol{\Gamma}$  satisfy

$$rac{dq^i}{dt} = \dot{q}^i, \quad rac{d\dot{q}^i}{dt} = \Gamma^i(q,\dot{q})\,,$$

which is equivalent to

$$\frac{d^2q^i(t)}{dt^2} = \Gamma^i\left(q(t), \frac{dq(t)}{dt}\right) \,.$$

Consider the canonical symplectic form  $\omega_Q = dq^i \wedge dp_i$  on  $T^*Q$ .

The *tangent lift* of  $\omega_Q$  to  $TT^*Q$  is a symplectic form

$$d_T \omega_Q = d\dot{q}^i \wedge dp_i + dq^i \wedge d\dot{p}_i \in \Omega^2(TT^*Q)$$

**Theorem (Barbero-Liñán, Farré Puiggalí, Martín de Diego (2015))** A SODE  $\Gamma$  on TQ is variational if and only if there exists a local diffeomorphism  $F: TQ \longrightarrow T^*Q$  of fibre bundles over Q such that  $\operatorname{Im}(TF \circ \Gamma)$ is a Lagrangian submanifold of the symplectic manifold  $(TT^*Q, d_T\omega_Q)$ .



### The continuous implicit case

- The explicit SODE on TQ is replaced by a submanifold of TTQ.
- $T^{(2)}Q$ : the second order tangent bundle of Q.

$$T^{(2)}Q = \{v \in TTQ : T\tau_Q(v) = \tau_{TQ}(v)\} \subset TTQ,$$

which locally is the set of  $(q, v, \dot{q}, \dot{v}) \in TTQ$  such that  $v = \dot{q}$ . Local coordinates on  $T^{(2)}Q$ :  $(q, \dot{q}, \ddot{q})$ .

• Implicit system of second order differential equations:

$$\Phi^{i}(q, \dot{q}, \ddot{q}) = 0, \quad i = 1, \dots, n,$$

such that  $C := \left(\frac{\partial \Phi}{\partial \ddot{q}}\right)$  is regular. This defines  $M \subset T^{(2)}Q \subset TTQ$ .

• As before, we call the system  $\Phi(q, \dot{q}, \ddot{q}) = 0$  variational if it is equivalent to the Euler-Lagrange equations for a regular Lagrangian  $L: TQ \to \mathbb{R}$  (same solutions).

#### Theorem (Explicit Implicit continuous case)

A SODE  $\Gamma$  on TQ  $\Phi(q, \dot{q}, \ddot{q}) = 0$  (as above) is variational if and only if there exists a local diffeomorphism  $F: TQ \longrightarrow T^*Q$  of fibre bundles over Q such that  $\operatorname{Im}(TF \circ \Gamma)$  TF(M) is a Lagrangian submanifold of the symplectic manifold  $(TT^*Q, d_T\omega_Q)$ .



This leads to the following Helmholtz conditions

$$\begin{split} \frac{\partial F_i}{\partial \dot{q}^j} &= \frac{\partial F_j}{\partial \dot{q}^i} \,,\\ \frac{\partial^2 F_i}{\partial \dot{q}^j \partial q^k} \dot{q}^k + \frac{\partial F_i}{\partial q^j} + \frac{\partial^2 F_i}{\partial \dot{q}^j \partial \dot{q}^k} \ddot{q}^k - \frac{\partial F_j}{\partial q^i} &= \frac{\partial F_i}{\partial \dot{q}^k} \frac{\partial \Phi^r}{\partial \dot{q}^j} (C^{-1})_r^k \,,\\ \frac{\partial^2 F_i}{\partial q^j \partial q^k} \dot{q}^k + \frac{\partial^2 F_i}{\partial q^j \partial \dot{q}^k} \ddot{q}^k - \frac{\partial F_i}{\partial \dot{q}^k} \frac{\partial \Phi^r}{\partial q^j} (C^{-1})_r^k = \text{same with } i \leftrightarrows j \,. \end{split}$$

That is, the system  $\Phi(q, \dot{q}, \ddot{q}) = 0$  is variational if and only if there is a solution  $F: TQ \to T^*Q$  (local diffeomorphism over Q) to the above Helmholtz conditions.

If the system is variational with Lagrangian L, then one can take

$$F := \mathbb{F}L \colon TQ \to T^*Q$$
$$(q, \dot{q}) \mapsto \left(q, \frac{\partial L}{\partial \dot{q}}\right)$$

## **Discrete mechanics**

We want to do something similar for discrete systems.

### Introduction to discrete mechanics

- $Q \times Q$ : discrete version of TQ.
- Instead of curves on Q, take sequences of points  $q_0, q_1, \ldots, q_N$ .
- Instead of a function  $L \colon TQ \to \mathbb{R}$ , we consider a *discrete Lagrangian*

 $L_d: Q \times Q \to \mathbb{R}.$ 

• Discrete action:

$$S_d(q_0, \dots, q_N) = \sum_{k=0}^{N-1} L_d(q_k, q_{k+1})$$

Taking variations of the sequence with fixed endpoints  $q_0$  and  $q_N$  and extremizing the discrete action we obtain the *discrete Euler-Lagrange* equations (or DEL equations)

$$D_1L_d(q_k, q_{k+1}) + D_2L_d(q_{k-1}, q_k) = 0$$
 for all  $k = 1, \dots, N-1$ ,

where  $D_1L_d(q_{k-1}, q_k) \in T^*_{q_{k-1}}Q$  and  $D_2L_d(q_{k-1}, q_k) \in T^*_{q_k}Q$ .

Assume that  $L_d$  is regular, that is,  $D_{12}L_d$  is a regular matrix. Then we can solve for  $q_{k+1}$  and obtain an evolution map (discrete flow)

$$\begin{array}{rcl} \Phi_{L_d}: & Q \times Q & \longrightarrow & Q \times Q \\ & (q_{k-1}, q_k) & \longmapsto & (q_k, q_{k+1}(q_{k-1}, q_k)) \,, \end{array}$$

Define the two discrete Legendre transformations:

$$\mathbb{F}^+ L_d, \ \mathbb{F}^- L_d : Q \times Q \longrightarrow T^*Q,$$

$$\mathbb{F}^+ L_d(q_{k-1}, q_k) = (q_k, D_2 L_d(q_{k-1}, q_k)) \in T^*_{q_k} Q ,$$
  
$$\mathbb{F}^- L_d(q_{k-1}, q_k) = (q_{k-1}, -D_1 L_d(q_{k-1}, q_k)) \in T^*_{q_{k-1}} Q .$$

We can pull back the canonical symplectic form by either Legendre transformation and get the same result:

$$(\mathbb{F}^+L_d)^*\omega_Q = (\mathbb{F}^-L_d)^*\omega_Q =: \Omega_{L_d} \in \Omega^2(Q \times Q)$$

Locally,

$$\Omega_{L_d}(q_{k-1}, q_k) = -\frac{\partial^2 L_d}{\partial q_{k-1}^i \partial q_k^j} dq_{k-1}^i \wedge dq_k^j.$$

It can be shown that the discrete flow  $\Phi_{L_d}$ :  $(q_{k-1}, q_k) \mapsto (q_k, q_{k+1}(q_{k-1}, q_k))$  preserves  $\Omega_{L_d}$ .

## Inverse problem — discrete setting

### First situation: explicit case

Consider  $Q \times Q \times Q \times Q$  as a discrete version of TTQ.

The discrete second order submanifold is defined by

$$\ddot{Q}_d = \{(q, \bar{q}, \bar{q}, \hat{q}) \in Q^4\} \cong Q \times Q \times Q$$

A second order difference equation (SOdE) is (by def.) a map of the form

$$\begin{split} \Gamma : & Q \times Q & \longrightarrow & Q \times Q \times Q \times Q \\ & (q_{k-1}, q_k) & \longmapsto & (q_{k-1}, q_k, q_k, \tilde{\Gamma}(q_{k-1}, q_k)) \,, \end{split}$$

(discrete analogue of  $\Gamma: TQ \to TTQ$ ).

Note that  $\Gamma$  takes values on  $\ddot{Q}_d \subset Q^4$  (a *continuous* SODE takes values on  $T^{(2)}Q \subset TTQ$ ).

We will sometimes say "the SOdE  $q_{k+1} = \tilde{\Gamma}(q_{k-1}, q_k)$ ".

#### Definition

(

The explicit second order difference equation  $q_{k+1} = \tilde{\Gamma}(q_{k-1}, q_k)$  is variational if and only if there is a regular discrete Lagrangian  $L_d : Q \times Q \longrightarrow \mathbb{R}$  such that

$$q_{k+1} = \tilde{\Gamma}(q_{k-1}, q_k)$$
 and  $D_1 L_d(q_k, q_{k+1}) + D_2 L_d(q_{k-1}, q_k) = 0$ 

admit the same solutions.

Let  $\alpha_Q: Q \times Q \longrightarrow Q$  be the projection onto the first factor. It plays the role of  $\tau_Q: TQ \longrightarrow Q$ .

Similarly,  $\alpha_{T^*Q}: T^*Q \times T^*Q \longrightarrow T^*Q$  is the projection onto the first factor. It plays the role of  $\tau_{T^*Q}: TT^*Q \longrightarrow T^*Q$ .

For a given SOdE  $q_{k+1} = \tilde{\Gamma}(q_{k-1}, q_k)$  and a local diffeomorphism  $F: Q \times Q \longrightarrow T^*Q$  over the identity, we define  $\gamma_{F,\Gamma} := (F \times F) \circ \Gamma$ 

#### Discrete

#### Continuous



For  $(q_{k-1}, q_k) \in Q \times Q$  the diagram is the following:

Consider on  $T^*Q \times T^*Q$  the symplectic form  $\Omega_Q := \beta^*_{T^*Q} \omega_Q - \alpha^*_{T^*Q} \omega_Q$ . In coordinates  $(q_{k-1}, p_{k-1}, q_k, p_k)$ ,

$$\Omega_Q = dq_k^i \wedge dp_{k,i} - dq_{k-1}^i \wedge dp_{k-1,i}$$

#### Theorem

The second order difference equation  $q_{k+1} = \tilde{\Gamma}(q_{k-1}, q_k)$  is variational if and only if there is a local diffeomorphism  $F : Q \times Q \longrightarrow T^*Q$  over the identity such that  $\operatorname{Im}(\gamma_{F,\Gamma})$  is a Lagrangian submanifold of  $(T^*Q \times T^*Q, \Omega_Q)$ .

*Proof.* Assume there is an F as in the statement, so  $Im(\gamma_{F,\Gamma})$  is a Lagrangian submanifold. This means:

- $\operatorname{Im}(\gamma_{F,\Gamma})$  is a submanifold of half the dimension of  $T^*Q \times T^*Q$ ,
- Isotropy condition:  $\gamma^*_{F,\Gamma}\Omega_Q = 0$  holds.

Recall that  $\omega_Q = -d\theta_Q \in \Omega^2(T^*Q)$ , where  $\theta_Q$  is the canonical one-form on  $T^*Q$ . Pullbacks commute with d, so

$$0 = \gamma_{F,\Gamma}^* \Omega_Q = \gamma_{F,\Gamma}^* (\beta_{T^*Q}^* \omega_Q - \alpha_{T^*Q}^* \omega_Q)$$
$$= -d \Big[ (\beta_{T^*Q} \circ \gamma_{F,\Gamma})^* \theta_Q - (\alpha_{T^*Q} \circ \gamma_{F,\Gamma})^* \theta_Q \Big] \quad \text{closed}$$

By the Poincaré Lemma, there is a (local)  $L_d: Q \times Q \longrightarrow \mathbb{R}$  such that

$$(\beta_{T^*Q} \circ \gamma_{F,\Gamma})^* \theta_Q - (\alpha_{T^*Q} \circ \gamma_{F,\Gamma})^* \theta_Q = dL_d$$

In local coordinates, this becomes

$$- F_i(q_{k-1}, q_k) dq_{k-1}^i + F_i(q_k, \tilde{\Gamma}(q_{k-1}, q_k)) dq_k^i = \frac{\partial L_d}{\partial q_{k-1}^i} (q_{k-1}, q_k) dq_{k-1}^i + \frac{\partial L_d}{\partial q_k^i} (q_{k-1}, q_k) dq_k^i ,$$

that is,

$$D_1 L_d(q_{k-1}, q_k) = -F(q_{k-1}, q_k)$$
$$D_2 L_d(q_{k-1}, q_k) = F(q_k, \tilde{\Gamma}(q_{k-1}, q_k)).$$

So far we have:

- We assumed that for the system  $q_{k+1} = \tilde{\Gamma}(q_{k-1}, q_k)$  (1), there is an F as in the statement.
- We found  $L_d \colon Q \times Q \to \mathbb{R}$  using the Poincaré Lemma, and it satisfies

$$D_1 L_d(q_{k-1}, q_k) = -F(q_{k-1}, q_k)$$
(2)

$$D_2 L_d(q_{k-1}, q_k) = F(q_k, \tilde{\Gamma}(q_{k-1}, q_k)),$$
(3)

for all  $(q_{k-1}, q_k)$  (locally).

Equation (2) means that  $F = \mathbb{F}^- L_d$ . Also, F being an diffeomorphism implies  $D_{12}L_d$  regular, so  $L_d$  is regular.

$$-D_1 L_d(q_k, q_{k+1}) \stackrel{(2)}{=} F(q_k, q_{k+1}) \stackrel{(1)}{=} F(q_k, \tilde{\Gamma}(q_{k-1}, q_k)) \stackrel{(3)}{=} D_2 L_d(q_{k-1}, q_k)$$

which shows that  $(q_{k-1}, q_k, q_{k+1} = \tilde{\Gamma}(q_{k-1}, q_k))$  satisfies the discrete Euler-Lagrange equations for  $L_d$ .

For the converse, assume now that  $q_{k+1} = \tilde{\Gamma}(q_{k-1}, q_k)$  is variational, with regular discrete Lagrangian  $L_d$ .

$$D_1 L_d(q_k, q_{k+1}) + D_2 L_d(q_{k-1}, q_k) = 0 \stackrel{\text{variationality}}{\iff} q_{k+1} = \tilde{\Gamma}(q_{k-1}, q_k)$$
$$\stackrel{D_{12} L_d \text{ regular}}{\iff} D_1 L_d(q_k, q_{k+1}) = D_1 L_d(q_k, \tilde{\Gamma}(q_{k-1}, q_k))$$

Take  $(q_{k-1}, q_k, q_{k+1})$  satisfying the DEL equations. This implies

$$D_2 L_d(q_{k-1}, q_k) = -D_1 L_d(q_k, \tilde{\Gamma}(q_{k-1}, q_k)).$$

Define  $F\colon Q\times Q\to T^*Q$  as

$$F(q_{k-1}, q_k) = -D_1 L_d(q_{k-1}, q_k).$$

Let us check that  $\operatorname{Im}(\gamma_{F,\Gamma}) = \operatorname{Im}((F \times F) \circ \Gamma)$  is a Lagrangian submanifold of  $(T^*Q \times T^*Q, \Omega_Q)$ .



Then  $\operatorname{Im}(\gamma_{F,\Gamma})$  is given by

$$\begin{split} \left( q_{k-1}, -D_1 L_d(q_{k-1}, q_k), q_k, -D_1 L_d(q_k, \tilde{\Gamma}(q_{k-1}, q_k)) \right) = \\ (q_{k-1}, -D_1 L_d(q_{k-1}, q_k), q_k, D_2 L_d(q_{k-1}, q_k)) \,. \end{split}$$

 $\operatorname{Im}(\gamma_{F,\Gamma})$  is the set of elements of  $T^*Q \times T^*Q$  of the form  $(q_{k-1}, -D_1L_d(q_{k-1}, q_k), q_k, D_2L_d(q_{k-1}, q_k))$ 

This very similar to the image of  $dL_d$ . In fact,

$$dL_d(q_{k-1}, q_k) = D_1 L_d(q_{k-1}, q_k) dq_{k-1} + D_2 L_d(q_{k-1}, q_k) dq_k$$
  

$$\equiv (q_{k-1}, q_k, D_1 L_d(q_{k-1}, q_k), D_2 L_d(q_{k-1}, q_k)) \in T^*(Q \times Q).$$

Im  $dL_d$  is a Lagrangian submanifold of  $(T^*(Q \times Q), \omega_{Q \times Q})$  with the canonical symplectic structure. (The image of a closed 1-form is a Lagrangian submanifold.)

Using the symplectomorphism

$$\begin{split} \Psi : & (T^*(Q \times Q), \omega_{Q \times Q}) & \longrightarrow & (T^*Q \times T^*Q, \Omega_Q) \\ & (\alpha_{q_0}, \alpha_{q_1}) & \longmapsto & (-\alpha_{q_0}, \alpha_{q_1}) \end{split}$$

we get that  $\operatorname{Im}(\gamma_{F,\Gamma})$  is a Lagrangian submanifold of  $(T^*Q \times T^*Q, \Omega_Q)$ .  $\Box$ 

#### **Discrete Helmholtz conditions**

If we impose that  $\operatorname{Im}(\gamma_{F,\Gamma})$  is a Lagrangian submanifold of  $(T^*Q \times T^*Q, \Omega_Q)$  for a given SOdE  $\Gamma$  then we get the following conditions on F:

$$\begin{split} \frac{\partial F_i}{\partial Q_1^j}(q_{k-1},q_k) &= \frac{\partial F_j}{\partial Q_1^i}(q_{k-1},q_k) \,,\\ \frac{\partial F_i}{\partial Q_2^l}(q_k,\tilde{\Gamma}(q_{k-1},q_k))\frac{\partial \tilde{\Gamma}^l}{\partial q_k^j} &= \frac{\partial F_j}{\partial Q_2^l}(q_k,\tilde{\Gamma}(q_{k-1},q_k))\frac{\partial \tilde{\Gamma}^l}{\partial q_k^i}\\ \frac{\partial F_i}{\partial Q_2^j}(q_{k-1},q_k) + \frac{\partial F_j}{\partial Q_2^l}(q_k,\tilde{\Gamma}(q_{k-1},q_k))\frac{\partial \tilde{\Gamma}^l}{\partial q_{k-1}^i} &= 0 \,, \end{split}$$

where  $\partial/\partial Q_1$ ,  $\partial/\partial Q_2$  denote partial derivatives with respect to the first and second slot respectively.

The system  $q_{k+1} = \tilde{\Gamma}(q_{k-1}, q_k)$  is variational if and only if there is a local diffeomorphism  $F \colon Q \times Q \to T^*Q$  satisfying the discrete Helmholtz conditions.

### Second situation: implicit case

Here a system of second order difference equations is given by a submanifold  $M \subset Q \times Q \times Q$ . We assume that M is given by

$$\Phi^{i}(q_{k-1}, q_k, q_{k+1}) = 0, \quad i = 1, \dots, n,$$

such that  $C := \left(\frac{\partial \Phi}{\partial q_{k+1}}\right)$  is invertible.

#### Definition

The implicit system of second order difference equations  $\Phi^i(q_{k-1}, q_k, q_{k+1}) = 0$ ,  $i = 1, \ldots, n$ , is variational if and only if there is a regular discrete Lagrangian  $L_d: Q \times Q \longrightarrow \mathbb{R}$  such that both systems

$$\Phi(q_{k-1},q_k,q_{k+1}) = 0 \quad \text{and} \quad D_1 L_d(q_k,q_{k+1}) + D_2 L_d(q_{k-1},q_k) = 0$$

admit the same solutions.

#### Proposition

The explicit SOdE  $q_{k+1} = \tilde{\Gamma}(q_{k-1}, q_k)$  implicit SOdE  $M \subset Q \times Q \times Q$ defined by  $\Phi(q_{k-1}, q_k, q_{k+1}) = 0$  is variational if and only if there is a local diffeomorphism  $F: Q \times Q \longrightarrow T^*Q$  over the identity such that  $\operatorname{Im}(\gamma_{F,\Gamma})$  $\operatorname{Im}((F \times F)|_M)$  is a Lagrangian submanifold of  $(T^*Q \times T^*Q, \Omega_Q)$ .



We get the implicit discrete Helmholtz conditions

$$\begin{split} \frac{\partial F_i}{\partial Q_1^j}(q_{k-1},q_k) &= \frac{\partial F_j}{\partial Q_1^i}(q_{k-1},q_k) \,,\\ \frac{\partial F_j}{\partial Q_1^i}(q_k,q_{k+1}) - \frac{\partial F_j}{\partial Q_2^l}(q_k,q_{k+1}) \frac{\partial \Phi^r}{\partial q_k^i}(C^{-1})_r^l = \text{same with } i \leftrightarrows j \,,\\ \frac{\partial F_i}{\partial Q_2^j}(q_{k-1},q_k) &= \frac{\partial F_j}{\partial Q_2^l}(q_k,q_{k+1}) \frac{\partial \Phi^r}{\partial q_{k-1}^i}(C^{-1})_r^l \end{split}$$

### Variationality of continuous constrained systems

Let  $C \subset TQ$  be a submanifold that can be locally described by

$$\underbrace{\dot{q}^{\alpha}}_{\text{``dependent'' velocities}} = \psi^{\alpha}(q^{i}, \overbrace{\dot{q}^{\alpha}}^{\text{''free'' velocities}})$$

Let  $\Gamma \in \mathfrak{X}(C)$  be a SODE. Locally,

$$\ddot{q}^a = \Gamma^a(q^i, \dot{q}^a)$$
  
 $\dot{q}^\alpha = \psi^\alpha(q^i, \dot{q}^a).$ 

**Definition (Barbero-Liñán, Farré Puiggalí, Martín de Diego (2015))** A SODE  $\Gamma$  on  $C \subset TQ$  is variational if there exists an immersion  $F: C \to T^*Q$  over Q such that  $\operatorname{Im}(TF \circ \Gamma)$  is an isotropic manifold of  $(TT^*Q, d_T\omega_Q)$ .



**Theorem (Barbero-Liñán, Farré Puiggalí, Martín de Diego (2015))** If a SODE  $\Gamma$  on C is variational, then there exists a Lagrangian  $L: TQ \to \mathbb{R}$ such that the integral curves of  $\Gamma$  are those solutions  $(q(t), \dot{q}(t))$  of the Euler–Lagrange equations that stay on C.

### Variationality of discrete constrained systems

Let  $C_d\subset Q\times Q$  be a submanifold defined by the discrete constraints  $q_k^\alpha=\psi^\alpha(q_{k-1}^i,q_k^a)$ 



Let  $\Gamma_d : C_d \longrightarrow C_d \times C_d$  be an explicit second order difference equation on  $C_d$ , that is,

$$\Gamma_d \underbrace{\overbrace{(q_{k-1}, q_k)}^{\in C_d}}_{(q_{k-1}, q_k)} = \underbrace{\overbrace{(q_{k-1}, q_k, q_k, \widetilde{\Gamma}_d(q_{k-1}, q_k)}^{\in C_d}}_{(q_{k-1}, q_k)} \in \ddot{Q}_d$$

Given an immersion  $F: C_d \longrightarrow T^*Q$  we define  $\gamma_{F,\Gamma} := (F \times F) \circ \Gamma_d$ , as shown in the following commutative diagram:



#### Definition

A SOdE  $\Gamma_d$  on  $C_d$  is variational if there exists an immersion  $F: C_d \longrightarrow T^*Q$  such that  $\operatorname{Im}(\gamma_{F,\Gamma_d})$  is an isotropic submanifold of  $(T^*Q \times T^*Q, \Omega_Q)$ .

As before, this leads to discrete Helmholtz conditions for constrained systems.

### The meaning of variationality for constrained systems

If the constrained SOdE  $\Gamma_d$  on  $C_d$  is variational, then we have an isotropic submanifold  $\operatorname{Im}(\gamma_{F,\Gamma_d})$  of  $(T^*Q \times T^*Q, \Omega_Q)$ . It can be extended to a Lagrangian submanifold of  $(T^*Q \times T^*Q, \Omega_Q)$  and it is possible to find a discrete Lagrangian  $L_d: Q \times Q \to \mathbb{R}$  such that its (free) dynamics, when restricted to  $C_d$ , coincide with the original SOdE  $\Gamma_d$ .

#### Some natural questions:

- 1. Given a continuous variational SODE  $\Gamma$  on a submanifold  $C \subset TQ$ , find integrators  $\Gamma_d$  that are also variational.
- 2. From the existing integrators for nonholonomic systems, detect the ones that preserve the variational property.

## Example

Discrete Lagrange-d'Alembert (DLA) algorithm (Cortés and Martínez, 2001).

Given a nonholonomic system, that is, a Lagrangian  $L: TQ \to \mathbb{R}$  and a nonintegrable distribution  $D \subset TQ$ , choose a discrete Lagrangian  $L_d$  and a discrete constraint space  $D_q \subset Q \times Q$ .

The DLA integrator is then

$$D_1 L_d(q_k, q_{k+1}) + D_2 L_d(q_{k-1}, q_k) = \lambda_a w^a(q_k) ,$$
$$w^a_d(q_k, q_{k+1}) = 0 ,$$

where  $\lambda_a$  are Lagrange multipliers,  $w^a$  are the constraint one-forms, and  $w^a_d$  are a discretization of the contraint one-forms.

Particular example: the vertical rolling disk.

The continuous constrained system is variational: for example, two alternative immersions  $F\colon C\to T^*Q$  are

$$F_1(\theta,\varphi,x,y,\dot{\theta},\dot{\varphi}) = (\theta,\varphi,x,y,2\dot{\theta},\dot{\varphi},0,0),$$

$$F_2(\theta,\varphi,x,y,\dot{\theta},\dot{\varphi}) = \left(\theta,\varphi,x,y,\frac{\dot{\theta}}{\dot{\varphi}},\dot{\varphi} - \frac{\dot{\theta}^2}{2\dot{\varphi}^2}\left(1 + \cos(\varphi) + \sin(\varphi)\right),\frac{\dot{\theta}}{\dot{\varphi}},\frac{\dot{\theta}}{\dot{\varphi}}\right)$$

Together with the constrained SODE  $\Gamma$  (continuous) for the rolling disk, both provide isotropic submanifolds of  $TT^*Q$ .

On the discrete side, we consider the DLA equations with midpoint discretizations for the constraints (L does not depend on the positions).

We might ask whether the discretizations of  $F_1$  and  $F_2$  could serve to show that the discrete system is variational.

Define  $F_{1d}: C_d \longrightarrow T^*Q$  as a discretization of  $F_1$ :

$$F_{d1}(\theta_{k-1}, \varphi_{k-1}, x_{k-1}, y_{k-1}, \theta_k, \varphi_k) = \left(\theta_{k-1}, \varphi_{k-1}, x_{k-1}, y_{k-1}, 2\frac{\theta_k - \theta_{k-1}}{h}, \frac{\varphi_k - \varphi_{k-1}}{h}, 0, 0\right)$$

This gives rise to an isotropic submanifold of  $T^*Q \times T^*Q$ , so the discrete constrained system is variational.

However, if we take a discretization of  $F_2$ , it does *not* give rise to an isotropic submanifold.

Now change the discretization from midpoint to initial point (for the DLA only;  $F_1$  does not depend on the positions). Then  $F_{1d}$  does not give an isotropic submanifold.

# ¡Gracias!