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Some standard notation
Q configuration space, dimQ = n, with local coordinates (qi).

τQ : TQ→ Q, with local coordinates (qi, q̇i).

πQ : T ∗Q→ Q, with local coordinates (qi, pi).



We want to consider the inverse problem for:

• Continuous systems

– Explicit

– Implicit

– Constrained

• Discrete systems

– Explicit

– Implicit

– Constrained



Inverse problem — continuous setting
Classical inverse problem of the calculus of variations: determining whether
a given system of explicit second order differential equations (SODE)

q̈i = Γi(qj , q̇j), i, j = 1, . . . , n

is equivalent (same solutions) to a system of Euler-Lagrange equations

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 ,

for a regular Lagrangian L(q, q̇) to be determined. In that case we say
that the SODE is variational.



A SODE Γ on TQ is a vector field Γ ∈ X(TQ) such that

TτQ(Γ(vq)) = vq for all vq ∈ TqQ.

TTQ
TτQ // TQ

τQ

��
TQ

Γ

OO
Id

<<

τQ // Q

Locally, Γ = q̇i
∂

∂qi
+ Γi(q, q̇) ∂

∂q̇i
, or Γ(qi, q̇i) = (qi, q̇i, q̇i,Γi(q, q̇)).

The integral curves of Γ satisfy

dqi

dt
= q̇i,

dq̇i

dt
= Γi(q, q̇) ,

which is equivalent to

d2qi(t)
dt2

= Γi
(
q(t), dq(t)

dt

)
.



Consider the canonical symplectic form ωQ = dqi ∧ dpi on T ∗Q.

The tangent lift of ωQ to TT ∗Q is a symplectic form

dTωQ = dq̇i ∧ dpi + dqi ∧ dṗi ∈ Ω2(TT ∗Q)

Theorem (Barbero-Liñán, Farré Puiggalí, Martín de Diego (2015))
A SODE Γ on TQ is variational if and only if there exists a local diffeo-
morphism F : TQ −→ T ∗Q of fibre bundles over Q such that Im(TF ◦Γ)
is a Lagrangian submanifold of the symplectic manifold (TT ∗Q, dTωQ).

TTQ
TF // TT ∗Q

τT∗Q

��
TQ

Γ

OO

F //

!!

TF◦Γ
66

T ∗Q

||
Q



The continuous implicit case
• The explicit SODE on TQ is replaced by a submanifold of TTQ.

• T (2)Q: the second order tangent bundle of Q.

T (2)Q = {v ∈ TTQ : TτQ(v) = τTQ(v)} ⊂ TTQ ,

which locally is the set of (q, v, q̇, v̇) ∈ TTQ such that v = q̇.

Local coordinates on T (2)Q: (q, q̇, q̈).

• Implicit system of second order differential equations:

Φi(q, q̇, q̈) = 0, i = 1, . . . , n ,

such that C :=
(
∂Φ
∂q̈

)
is regular. This defines M ⊂ T (2)Q ⊂ TTQ.

• As before, we call the system Φ(q, q̇, q̈) = 0 variational if it is
equivalent to the Euler–Lagrange equations for a regular Lagrangian
L : TQ→ R (same solutions).



Theorem (Explicit Implicit continuous case)
A SODE Γ on TQ Φ(q, q̇, q̈) = 0 (as above) is variational if and only
if there exists a local diffeomorphism F : TQ −→ T ∗Q of fibre bundles
over Q such that Im(TF ◦ Γ) TF(M) is a Lagrangian submanifold of the
symplectic manifold (TT ∗Q, dTωQ).

M �
� //

(implicit)

%%
T (2)Q �

� // TTQ
TF // TT ∗Q

τT∗Q

��
TQ

(explicit) Γ

OO

F //

TF◦Γ

<<

T ∗Q



This leads to the following Helmholtz conditions

∂Fi
∂q̇j

= ∂Fj
∂q̇i

,

∂2Fi
∂q̇j∂qk

q̇k + ∂Fi
∂qj

+ ∂2Fi
∂q̇j∂q̇k

q̈k − ∂Fj
∂qi

= ∂Fi
∂q̇k

∂Φr

∂q̇j
(C−1)kr ,

∂2Fi
∂qj∂qk

q̇k + ∂2Fi
∂qj∂q̇k

q̈k − ∂Fi
∂q̇k

∂Φr

∂qj
(C−1)kr = same with i� j.

That is, the system Φ(q, q̇, q̈) = 0 is variational if and only if there is
a solution F : TQ → T ∗Q (local diffeomorphism over Q) to the above
Helmholtz conditions.

If the system is variational with Lagrangian L, then one can take

F := FL : TQ→ T ∗Q

(q, q̇) 7→
(
q,
∂L

∂q̇

)



Discrete mechanics
We want to do something similar for discrete systems.

Introduction to discrete mechanics
• Q×Q: discrete version of TQ.

• Instead of curves on Q, take sequences of points q0, q1, . . . , qN .

• Instead of a function L : TQ→ R, we consider a discrete Lagrangian

Ld : Q×Q→ R.

• Discrete action:

Sd(q0, . . . , qN ) =
N−1∑
k=0

Ld(qk, qk+1)



Taking variations of the sequence with fixed endpoints q0 and qN and
extremizing the discrete action we obtain the discrete Euler-Lagrange
equations (or DEL equations)

D1Ld(qk, qk+1) +D2Ld(qk−1, qk) = 0 for all k = 1, . . . , N − 1 ,

where D1Ld(qk−1, qk) ∈ T ∗qk−1Q and D2Ld(qk−1, qk) ∈ T ∗qk
Q.

Assume that Ld is regular, that is, D12Ld is a regular matrix. Then we
can solve for qk+1 and obtain an evolution map (discrete flow)

ΦLd
: Q×Q −→ Q×Q

(qk−1, qk) 7−→ (qk, qk+1(qk−1, qk)) ,



Define the two discrete Legendre transformations:

F+Ld, F−Ld : Q×Q −→ T ∗Q ,

F+Ld(qk−1, qk) = (qk, D2Ld(qk−1, qk)) ∈ T ∗qk
Q ,

F−Ld(qk−1, qk) = (qk−1,−D1Ld(qk−1, qk)) ∈ T ∗qk−1Q .

We can pull back the canonical symplectic form by either Legendre trans-
formation and get the same result:

(F+Ld)∗ωQ = (F−Ld)∗ωQ =: ΩLd
∈ Ω2(Q×Q)

Locally,

ΩLd
(qk−1, qk) = − ∂2Ld

∂qik−1∂q
j
k

dqik−1 ∧ dq
j
k .

It can be shown that the discrete flow ΦLd
: (qk−1, qk) 7→ (qk, qk+1(qk−1, qk))

preserves ΩLd
.



Inverse problem — discrete setting

First situation: explicit case
Consider Q×Q×Q×Q as a discrete version of TTQ.

The discrete second order submanifold is defined by

Q̈d = {(q, q̄, q̄, q̂) ∈ Q4} ∼= Q×Q×Q

A second order difference equation (SOdE) is (by def.) a map of the form

Γ : Q×Q −→ Q×Q×Q×Q
(qk−1, qk) 7−→ (qk−1, qk, qk, Γ̃(qk−1, qk)) ,

(discrete analogue of Γ: TQ→ TTQ).

Note that Γ takes values on Q̈d ⊂ Q4 (a continuous SODE takes values
on T (2)Q ⊂ TTQ).

We will sometimes say “the SOdE qk+1 = Γ̃(qk−1, qk)”.



Definition
The explicit second order difference equation qk+1 = Γ̃(qk−1, qk) is varia-
tional if and only if there is a regular discrete Lagrangian Ld : Q×Q −→ R
such that

qk+1 = Γ̃(qk−1, qk) and D1Ld(qk, qk+1) +D2Ld(qk−1, qk) = 0

admit the same solutions.

Let αQ : Q×Q −→ Q be the projection onto the first factor. It plays the
role of τQ : TQ −→ Q.

Similarly, αT ∗Q : T ∗Q × T ∗Q −→ T ∗Q is the projection onto the first
factor. It plays the role of τT ∗Q : TT ∗Q −→ T ∗Q.



For a given SOdE qk+1 = Γ̃(qk−1, qk) and a local diffeomorphism
F : Q×Q −→ T ∗Q over the identity, we define γF,Γ := (F × F ) ◦ Γ

Discrete Continuous

Q×Q×Q×Q F×F // T ∗Q× T ∗Q
αT∗Q

��

TTQ
TF // TT ∗Q

τT∗Q

��
Q×Q

Γ

OO

F //

γF,Γ
44

αQ

%%

T ∗Q

πQ
{{

TQ

Γ

OO

F //

τQ ��

TF◦Γ
77

T ∗Q

πQ~~
Q Q

For (qk−1, qk) ∈ Q×Q the diagram is the following:

(qk−1, qk, qk, Γ̃(qk−1, qk))
F×F // (qk−1, F (qk−1, qk), qk, F (qk, Γ̃(qk−1, qk)))

αT∗Q

��
(qk−1, qk)

Γ

OO

F //

γF,Γ
33

(qk−1, F (qk−1, qk))



Consider on T ∗Q× T ∗Q the symplectic form ΩQ := β∗T ∗QωQ − α∗T ∗QωQ.
In coordinates (qk−1, pk−1, qk, pk),

ΩQ = dqik ∧ dpk,i − dqik−1 ∧ dpk−1,i

Theorem
The second order difference equation qk+1 = Γ̃(qk−1, qk) is variational
if and only if there is a local diffeomorphism F : Q × Q −→ T ∗Q

over the identity such that Im(γF,Γ) is a Lagrangian submanifold of
(T ∗Q× T ∗Q,ΩQ).

Proof. Assume there is an F as in the statement, so Im(γF,Γ) is a La-
grangian submanifold. This means:

• Im(γF,Γ) is a submanifold of half the dimension of T ∗Q× T ∗Q,

• Isotropy condition: γ∗F,ΓΩQ = 0 holds.



Recall that ωQ = −dθQ ∈ Ω2(T ∗Q), where θQ is the canonical one-form
on T ∗Q. Pullbacks commute with d, so

0 = γ∗F,ΓΩQ = γ∗F,Γ(β∗T ∗QωQ − α∗T ∗QωQ)

= −d
[
(βT ∗Q ◦ γF,Γ)∗θQ − (αT ∗Q ◦ γF,Γ)∗θQ

]
closed

By the Poincaré Lemma, there is a (local) Ld : Q×Q −→ R such that

(βT ∗Q ◦ γF,Γ)∗θQ − (αT ∗Q ◦ γF,Γ)∗θQ = dLd

In local coordinates, this becomes

− Fi(qk−1, qk)dqik−1 + Fi(qk, Γ̃(qk−1, qk))dqik =
∂Ld
∂qik−1

(qk−1, qk)dqik−1 + ∂Ld
∂qik

(qk−1, qk)dqik ,

that is,

D1Ld(qk−1, qk) = −F (qk−1, qk)
D2Ld(qk−1, qk) = F (qk, Γ̃(qk−1, qk)).



So far we have:

• We assumed that for the system qk+1 = Γ̃(qk−1, qk) (1), there is an
F as in the statement.

• We found Ld : Q×Q→ R using the Poincaré Lemma, and it satisfies

D1Ld(qk−1, qk) = −F (qk−1, qk) (2)
D2Ld(qk−1, qk) = F (qk, Γ̃(qk−1, qk)), (3)

for all (qk−1, qk) (locally).

Equation (2) means that F = F−Ld. Also, F being an diffeomorphism
implies D12Ld regular, so Ld is regular.

−D1Ld(qk, qk+1) (2)= F (qk, qk+1) (1)= F (qk, Γ̃(qk−1, qk))
(3)= D2Ld(qk−1, qk)

which shows that (qk−1, qk, qk+1 = Γ̃(qk−1, qk)) satisfies the discrete
Euler-Lagrange equations for Ld.



For the converse, assume now that qk+1 = Γ̃(qk−1, qk) is variational, with
regular discrete Lagrangian Ld.

D1Ld(qk, qk+1) +D2Ld(qk−1, qk) = 0 variationality⇐⇒ qk+1 = Γ̃(qk−1, qk)
D12Ld regular⇐⇒ D1Ld(qk, qk+1) = D1Ld(qk, Γ̃(qk−1, qk))

Take (qk−1, qk, qk+1) satisfying the DEL equations. This implies

D2Ld(qk−1, qk) = −D1Ld(qk, Γ̃(qk−1, qk)) .

Define F : Q×Q→ T ∗Q as

F (qk−1, qk) = −D1Ld(qk−1, qk).



Let us check that Im(γF,Γ) = Im((F×F )◦Γ) is a Lagrangian submanifold
of (T ∗Q× T ∗Q,ΩQ).

Q×Q×Q×Q F×F // T ∗Q× T ∗Q
αT∗Q

��
Q×Q

Γ

OO

F //

γF,Γ
55

T ∗Q

(qk−1, qk, qk, Γ̃(qk−1, qk))
F×F // (qk−1, F (qk−1, qk), qk, F (qk, Γ̃(qk−1, qk)))

αT∗Q

��
(qk−1, qk)

Γ

OO

F //

γF,Γ
33

(qk−1, F (qk−1, qk))

Then Im(γF,Γ) is given by(
qk−1,−D1Ld(qk−1, qk), qk,−D1Ld(qk, Γ̃(qk−1, qk))

)
=

(qk−1,−D1Ld(qk−1, qk), qk, D2Ld(qk−1, qk)) .



Im(γF,Γ) is the set of elements of T ∗Q× T ∗Q of the form

(qk−1,−D1Ld(qk−1, qk), qk, D2Ld(qk−1, qk))

This very similar to the image of dLd. In fact,

dLd(qk−1, qk) = D1Ld(qk−1, qk)dqk−1 +D2Ld(qk−1, qk)dqk
≡ (qk−1, qk, D1Ld(qk−1, qk), D2Ld(qk−1, qk)) ∈ T ∗(Q×Q).

Im dLd is a Lagrangian submanifold of (T ∗(Q×Q), ωQ×Q) with the canon-
ical symplectic structure. (The image of a closed 1-form is a Lagrangian
submanifold.)

Using the symplectomorphism

Ψ : (T ∗(Q×Q), ωQ×Q) −→ (T ∗Q× T ∗Q,ΩQ)
(αq0 , αq1) 7−→ (−αq0 , αq1)

we get that Im(γF,Γ) is a Lagrangian submanifold of (T ∗Q×T ∗Q,ΩQ).



Discrete Helmholtz conditions
If we impose that Im(γF,Γ) is a Lagrangian submanifold of (T ∗Q ×
T ∗Q,ΩQ) for a given SOdE Γ then we get the following conditions on F :

∂Fi

∂Qj1
(qk−1, qk) = ∂Fj

∂Qi1
(qk−1, qk) ,

∂Fi

∂Ql2
(qk, Γ̃(qk−1, qk))

∂Γ̃l

∂qjk
= ∂Fj

∂Ql2
(qk, Γ̃(qk−1, qk))

∂Γ̃l

∂qik

∂Fi

∂Qj2
(qk−1, qk) + ∂Fj

∂Ql2
(qk, Γ̃(qk−1, qk))

∂Γ̃l

∂qik−1
= 0 ,

where ∂/∂Q1, ∂/∂Q2 denote partial derivatives with respect to the first
and second slot respectively.

The system qk+1 = Γ̃(qk−1, qk) is variational if and only if there is a
local diffeomorphism F : Q×Q→ T ∗Q satisfying the discrete Helmholtz
conditions.



Second situation: implicit case
Here a system of second order difference equations is given by a submanifold
M ⊂ Q×Q×Q. We assume that M is given by

Φi(qk−1, qk, qk+1) = 0, i = 1, . . . , n,

such that C :=
(

∂Φ
∂qk+1

)
is invertible.

Definition
The implicit system of second order difference equations Φi(qk−1, qk, qk+1) =
0, i = 1, . . . , n, is variational if and only if there is a regular discrete La-
grangian Ld : Q×Q −→ R such that both systems

Φ(qk−1, qk, qk+1) = 0 and D1Ld(qk, qk+1) +D2Ld(qk−1, qk) = 0

admit the same solutions.



Proposition
The explicit SOdE qk+1 = Γ̃(qk−1, qk) implicit SOdE M ⊂ Q × Q × Q
defined by Φ(qk−1, qk, qk+1) = 0 is variational if and only if there is a local
diffeomorphism F : Q×Q −→ T ∗Q over the identity such that Im(γF,Γ)
Im((F × F )|M ) is a Lagrangian submanifold of (T ∗Q× T ∗Q,ΩQ).

M �
� //

(implicit)

''
Q×Q×Q �

� // Q×Q×Q×Q F×F // T ∗Q× T ∗Q

αT∗Q

��
Q×Q

(explicit) Γ

OO

F //

(F×F )◦Γ

88

T ∗Q



We get the implicit discrete Helmholtz conditions

∂Fi

∂Qj1
(qk−1, qk) = ∂Fj

∂Qi1
(qk−1, qk) ,

∂Fj
∂Qi1

(qk, qk+1)− ∂Fj

∂Ql2
(qk, qk+1)∂Φr

∂qik
(C−1)lr = same with i� j ,

∂Fi

∂Qj2
(qk−1, qk) = ∂Fj

∂Ql2
(qk, qk+1) ∂Φr

∂qik−1
(C−1)lr



Variationality of continuous constrained systems
Let C ⊂ TQ be a submanifold that can be locally described by

q̇α︸︷︷︸
“dependent” velocities

= ψα(qi,
“free” velocities︷︸︸︷

q̇a )

Let Γ ∈ X(C) be a SODE. Locally,

q̈a = Γa(qi, q̇a)
q̇α = ψα(qi, q̇a).



Definition (Barbero-Liñán, Farré Puiggalí, Martín de Diego (2015))
A SODE Γ on C ⊂ TQ is variational if there exists an immersion
F : C → T ∗Q over Q such that Im(TF ◦ Γ) is an isotropic manifold
of (TT ∗Q, dTωQ).

TC
TF // TT ∗Q

τT∗Q

��
C

Γ

OO

TF◦Γ

<<

F // T ∗Q

Theorem (Barbero-Liñán, Farré Puiggalí, Martín de Diego (2015))
If a SODE Γ on C is variational, then there exists a Lagrangian L : TQ→ R
such that the integral curves of Γ are those solutions (q(t), q̇(t)) of the
Euler–Lagrange equations that stay on C.



Variationality of discrete constrained systems
Let Cd ⊂ Q × Q be a submanifold defined by the discrete constraints
qαk = ψα(qik−1, q

a
k)

qαk︸︷︷︸
“dependent” components

= ψα(qik−1,

“free” components︷︸︸︷
qak )

Let Γd : Cd −→ Cd × Cd be an explicit second order difference equation
on Cd, that is,

Γd

∈Cd︷ ︸︸ ︷
(qk−1, qk) = (

∈Cd︷ ︸︸ ︷
qk−1, qk,

∈Cd︷ ︸︸ ︷
qk, Γ̃d(qk−1, qk)) ∈ Q̈d



Given an immersion F : Cd −→ T ∗Q we define γF,Γ := (F × F ) ◦ Γd, as
shown in the following commutative diagram:

Cd × Cd
F×F // T ∗Q× T ∗Q

αT∗Q

��
Cd

Γd

OO

F //

γF,Γd

44

αQ|Cd ##

T ∗Q

πQ
yy

Q

Definition
A SOdE Γd on Cd is variational if there exists an immersion F : Cd −→
T ∗Q such that Im(γF,Γd

) is an isotropic submanifold of (T ∗Q×T ∗Q,ΩQ).

As before, this leads to discrete Helmholtz conditions for constrained
systems.



The meaning of variationality for constrained systems
If the constrained SOdE Γd on Cd is variational, then we have an isotropic
submanifold Im(γF,Γd

) of (T ∗Q × T ∗Q,ΩQ). It can be extended to a
Lagrangian submanifold of (T ∗Q× T ∗Q,ΩQ) and it is possible to find a
discrete Lagrangian Ld : Q×Q→ R such that its (free) dynamics, when
restricted to Cd, coincide with the original SOdE Γd.

Some natural questions:

1. Given a continuous variational SODE Γ on a submanifold C ⊂ TQ,
find integrators Γd that are also variational.

2. From the existing integrators for nonholonomic systems, detect the
ones that preserve the variational property.



Example
Discrete Lagrange-d’Alembert (DLA) algorithm (Cortés and Martínez,
2001).

Given a nonholonomic system, that is, a Lagrangian L : TQ→ R and a
nonintegrable distribution D ⊂ TQ, choose a discrete Lagrangian Ld and
a discrete constraint space Dq ⊂ Q×Q.

The DLA integrator is then

D1Ld(qk, qk+1) +D2Ld(qk−1, qk) = λaw
a(qk) ,

wad(qk, qk+1) = 0 ,

where λa are Lagrange multipliers, wa are the constraint one-forms, and
wad are a discretization of the contraint one-forms.



Particular example: the vertical rolling disk.

The continuous constrained system is variational: for example, two alter-
native immersions F : C → T ∗Q are

F1(θ, ϕ, x, y, θ̇, ϕ̇) = (θ, ϕ, x, y, 2θ̇, ϕ̇, 0, 0),

F2(θ, ϕ, x, y, θ̇, ϕ̇) =
(
θ, ϕ, x, y,

θ̇

ϕ̇
, ϕ̇− θ̇2

2ϕ̇2 (1 + cos(ϕ) + sin(ϕ)) , θ̇
ϕ̇
,
θ̇

ϕ̇

)
Together with the constrained SODE Γ (continuous) for the rolling disk,
both provide isotropic submanifolds of TT ∗Q.

On the discrete side, we consider the DLA equations with midpoint dis-
cretizations for the constraints (L does not depend on the positions).

We might ask whether the discretizations of F1 and F2 could serve to
show that the discrete system is variational.



Define F1d : Cd −→ T ∗Q as a discretization of F1:

Fd1(θk−1, ϕk−1, xk−1, yk−1, θk, ϕk) =
(
θk−1, ϕk−1, xk−1, yk−1,

2θk − θk−1
h

,
ϕk − ϕk−1

h
, 0, 0

)
This gives rise to an isotropic submanifold of T ∗Q× T ∗Q, so the discrete
constrained system is variational.

However, if we take a discretization of F2, it does not give rise to an
isotropic submanifold.

Now change the discretization from midpoint to initial point (for the DLA
only; F1 does not depend on the positions). Then F1d does not give an
isotropic submanifold.



¡Gracias!


