El problema inverso del calculo de variaciones

para sistemas discretos

Sebastian J. Ferraro

en colaboracién con Maria Barbero-Lifian, Marta Farré Puiggali y David Martin de Diego

Mar del Plata, 28 de Septiembre de 2017




Some standard notation
Q configuration space, dim Q = n, with local coordinates (q*).
70: TQ — @, with local coordinates (g*, ¢").

7g: T*Q — @, with local coordinates (¢¢, p;).



We want to consider the inverse problem for:
e Continuous systems
— Explicit
— Implicit
— Constrained
e Discrete systems
— Explicit
— Implicit

— Constrained



Inverse problem — continuous setting

Classical inverse problem of the calculus of variations: determining whether
a given system of explicit second order differential equations (SODE)

¢=T(,¢), ij=1...,n
is equivalent (same solutions) to a system of Euler-Lagrange equations

doL oL
dt 8¢ 9qt

for a regular Lagrangian L(q, ) to be determined. In that case we say
that the SODE is variational.



A SODE T on T'Q is a vector field I" € X(T'Q) such that

T1o(T'(vg)) = vq for all v, € T,Q.
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Locally, T' = ¢’ —— +I"(¢,4) 5. or ['(¢",¢") = (¢'.¢",¢". T"(q, 9))-
g’ dq
The integral curves of I' satisfy
dq dg’ L
= =4t _— = FZ
T =4 (¢:4)
which is equivalent to
Cet) dq(t
o =T (a0, %)



Consider the canonical symplectic form wg = dg* A dp; on T*Q.
The tangent lift of wg to TT™*(Q) is a symplectic form
drwg = dg* A dp; +dq' A dp; € Q*(TT*Q)

Theorem (Barbero-Lifian, Farré Puiggali, Martin de Diego (2015))
A SODE T on TQ is variational if and only if there exists a local diffeo-
morphism F': T'QQ — T*Q of fibre bundles over @ such that Im(T'F oT)
is a Lagrangian submanifold of the symplectic manifold (7T7%Q, drwg).
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The continuous implicit case

The explicit SODE on T'QQ is replaced by a submanifold of T7Q.
T2 Q: the second order tangent bundle of Q.

TAQ ={veTTQ: Tro(v) = rrq(v)} C TTQ,
which locally is the set of (q,v,¢,0) € TTQ such that v = q.
Local coordinates on T Q: (q, ¢, §).
Implicit system of second order differential equations:

®(¢,4,4) =0, i=1...,n,
0o\ | . , 9
such that C := 5 is regular. This defines M c TAQ c TTQ.
q
As before, we call the system ®(q,q,§) = 0 variational if it is

equivalent to the Euler—Lagrange equations for a regular Lagrangian
L: TQ — R (same solutions).



Theorem (Explieit Implicit continuous case)

A-SOBETF-oenTQ ©(q,¢,4) = 0 (as above) is variational if and only
if there exists a local diffeomorphism F': T'(Q — T*(Q of fibre bundles

over ) such that I{F+F-eF) TF(M) is a Lagrangian submanifold of the
symplectic manifold (T7*Q, drwq).

(implicit)

M¢ T@QC T7Q — ™ . TT*Q

(explicit) T’ Tkel TT*Q

TQ

T*Q



This leads to the following Helmholtz conditions
oF;  OF;
0@  0¢t’
O*F, ., OF, = 0°F, ., OF; OF;00"
aioft T ag T ogaqr! T og  of o
0’F; 0°F; , OF; 09"
ogot ! T o T ok o

(€7,

(C~H* = same with i = j.

That is, the system ®(q,q,G) = 0 is variational if and only if there is
a solution F': TQ — T*Q (local diffeomorphism over Q) to the above
Helmholtz conditions.

If the system is variational with Lagrangian L, then one can take

F:=FL:TQ —T"Q

(¢:4) — (q, ?;)



Discrete mechanics
We want to do something similar for discrete systems.

Introduction to discrete mechanics

e () x Q: discrete version of T'Q).

e Instead of curves on @), take sequences of points qo, q1, - .-, qN.
e Instead of a function L: T'QQ — R, we consider a discrete Lagrangian
Lg: Q X Q — R.
e Discrete action:
N-1

Sa(qo - an) = D La(qr, qrr1)
k=0



Taking variations of the sequence with fixed endpoints gg and ¢x and
extremizing the discrete action we obtain the discrete Euler-Lagrange
equations (or DEL equations)

DlLd(quqk+1)+D2Ld(qk717qk) =0 for all kzl:"'7N_17

where D1Lg(qr—1,qx) € Ty, Q and DaLg(qr—1,qx) € T, Q.

Assume that L, is regular, that is, D12Lg is a regular matrix. Then we
can solve for gi11 and obtain an evolution map (discrete flow)

P, Q@QxQ — QxQ
(e-1,q8) — (@ Ghr1(qe—1,qx)) ,



Define the two discrete Legendre transformations:

FrLy, F Ly:QxQ—T*Q,

F*La(qk—1, k) = (qk> D2La(ar—1, ) € T, Q
F~ La(qk—1, 1) = (qk—1, —D1Lalqr—1,qx)) € T, Q-

We can pull back the canonical symplectic form by either Legendre trans-
formation and get the same result:

(FTLg)*wg = (F~ Ly)*wg =: 1, € Q%(Q x Q)
Locally,
0%Ly

. dq,i_l A dqi .
9q;,_104j,

Qr,(qk—1,qr) = —

It can be shown that the discrete flow @y, : (qr—1, k) — (qks Qe+1(qk—1, k)
preserves €1y, .



Inverse problem — discrete setting

First situation: explicit case

Consider Q@ x @@ x @ x @Q as a discrete version of TT(Q.
The discrete second order submanifold is defined by

Qd:{(q767Q77q\) €Q4}gQXQXQ

A second order difference equation (SOdE) is (by def.) a map of the form
r« Qx@ — QxQxQxQ

(Qk—h%) — (QK—17Qk7Qk7P(Qk—17Qk)) P
(discrete analogue of I': TQ — TTQ).

Note that I' takes values on Q; C Q* (a continuous SODE takes values
on TAQ c TTQ).

We will sometimes say “the SOdE ¢x+1 = I'(qr—1,qx)"



Definition

The explicit second order difference equation g1 = I'(qr_1,qx) is varia-
tional if and only if there is a regular discrete Lagrangian Ly : @ xQ — R
such that

qk+1 =D(qr—1,q9x) and D1L4(qk, qr+1) + DaLa(qk—1,qx) =0

admit the same solutions.
Let ag : @ x @ — @ be the projection onto the first factor. It plays the
role of 7 : TQ) — Q.

Similarly, ar=g : T*Q x T*Q — T*Q is the projection onto the first
factor. It plays the role of 7p+q : TT*Q — T™Q.



For a given SOdE i1 = I'(qk—1,qr) and a local diffeomorphism
F:Q x Q — T*Q over the identity, we define ypp := (F X F) oI’

Discrete Continuous
OxQxQxQ—"E _prgxrQ 1T7Q —F ~ 770
FT TET iaT*Q FT y iTT*Q
QxQ L T*Q TQ—F—T"Q
Q Q

For (qk—1,qr) € Q x @ the diagram is the following:

FxF
(1> @e> s (@1, q1)) —— (@15 F (@1, &) @> F (@i T(qr—1, 1))

YF,T
FT / lO‘T*Q
F

(qk—1,qx) (r—1, F(qr—1, qr))




Consider on T%Q x T™Q the symplectic form Q¢ := fr.qwg — ap-gwQ-
In coordinates (qk—1, Pk—1, Gk, Pk),

Qq = dgj, A dpr; — dgj_; N dp—1,;

Theorem

The second order difference equation qx11 = f(qk,l,qk) is variational
if and only if there is a local diffeomorphism F : Q x Q — T*Q
over the identity such that Im(ygr) is a Lagrangian submanifold of
(T*Q x T*Q, ).

Proof. Assume there is an F' as in the statement, so Im(vygr) is a La-
grangian submanifold. This means:
e Im(ypr) is a submanifold of half the dimension of T#Q x T*Q),

e Isotropy condition: 5 {2 = 0 holds.



Recall that wg = —dfg € Q?(T*Q), where 6 is the canonical one-form
on T*Q. Pullbacks commute with d, so
0 =75rQ2 = Y (Br-qwo — aT-qwQ)
= _d[(ﬁT*Q o ’VFI)*GQ - (OCT*Q o 'YF,F)*QQ} closed
By the Poincaré Lemma, there is a (local) Ly : Q X @ — R such that

(Br+q o vFr) g — (ar+@ o vrr) g = dLqg
In local coordinates, this becomes

— Fy(qr—1,q1)dq}_1 + Fi(as, T(qk-1, qx))dg}, =
0Ly

oL,
8‘11@71

(qh—1, @k)dah_1 + —— (qe—1, a)dg},
Oq,,

that is,

D1Lg(qr—1,qr) = —F(qr-1,qx)

DoLa(qr—1,qx) = F(qr, I'(qk—1,qx))-



So far we have;

e We assumed that for the system qx+1 = I'(qr—1,qx) (1), there is an
F as in the statement.

e We found Lg: Q) x@Q — R using the Poincaré Lemma, and it satisfies

D1La(qr—1,qr) = —F(qr—1, ax) (2)

DoLa(qk-1,qx) = F(ar, T'(gk-1, ax)), (3)

for all (gk—1,qr) (locally).

Equation (2) means that F' = F~L,. Also, F being an diffeomorphism
implies D1sLg regular, so Ly is regular.

2 1 3
—D1La(qk, qr+1) = F(qk, qk+1) & F(qe, I'(qe—1,qx)) © Do Lg(qr—1,qk)

which shows that (gr—1,qr, qre1 = L(qr—1,qx)) satisfies the discrete
Euler-Lagrange equations for L.



For the converse, assume now that g1 = I'(gk—1, qx) is variational, with
regular discrete Lagrangian L.
variationality ~
D1 La(qk, qk+1) + D2La(gk—1,95) =0 7 =" qr+1 = I'(qk—1. qx)

DisLg regular ~
<~

D1Lq(qk, qk+1) = D1La(qr, T'(qr—1, )

Take (qk—1,qr, qr+1) satisfying the DEL equations. This implies

DoyLa(qk—1,qr) = —D1La(q, T'(qr—1, qx)) -

Define F': ) x Q — T*Q as

F(qr-1,q1) = —D1La(qr—1, qr)-



Let us check that Im(yg ) = Im((F x F')oI') is a Lagrangian submanifold
of (T*Q x T*Q, Q).

FxF

RQXQxEQxQ T*Q x T*Q
QxQ i T*Q

FxF
(1> T> o (@1, @) ——> (@15 F (@1, &) @> F (@i D@1, 1))

YF,©
FT / laT* Q
F

(@r—1, qx) (qr—1, F(qk—1,qx))

Then Im(ygr) is given by

(Qk—b _DlLd(Qk—la qk)7 dk, _DlLd(q.Iﬂa f(Qk‘—la Qk))) =

(qk—1,—D1Lq(qr—1, %) @k» D2 La(qr—1,qx)) -



Im(ypr) is the set of elements of T*Q x T*Q of the form

(@k—1, —D1La(qk—1:qk), @k D2La(qr-1,qx))
This very similar to the image of dL,. In fact,

dLq(qr—1,qx) = D1La(qr—1, qr)dqr—1 + DoLq(qr—1, qx)dqx
= (qk—1, 9k, D1La(qk—1,qx), D2La(qk—1,qx)) € T*(Q x Q).

Im dLg is a Lagrangian submanifold of (7*(Q % Q),wgxq) with the canon-
ical symplectic structure. (The image of a closed 1-form is a Lagrangian
submanifold.)

Using the symplectomorphism
U (THQx Q),wexq) — (T7Q xT7Q,Qq)
(vgy, g ) — (—agq, gy

we get that Im(yp 1) is a Lagrangian submanifold of (T*QxT7Q,Qg). O



Discrete Helmholtz conditions

If we impose that Im(ygr) is a Lagrangian submanifold of (77Q x
T*Q,Qq) for a given SOdE I" then we get the following conditions on F":

O (o) = 2 (gh 1, ),
BQ] dk—1,4k 8QZ qk—1,9k
OF; ort  OF; or!
20} —(qr D(gn— 17Qk))8qk 9L = (e T (q— 17%))8%
OF; OF. or!

(g — =
an (Qk 17Qk) aQQ(qk’ (qk laqk))aq;cil 07

where 0/0Q1, 0/0Q2 denote partial derivatives with respect to the first

and second slot respectively.

The system ¢p1 = L'(qu_1,qx) is variational if and only if there is a
local diffeomorphism F': Q) x Q — T*() satisfying the discrete Helmholtz

conditions.



Second situation: implicit case

Here a system of second order difference equations is given by a submanifold
M C Q x @ x Q. We assume that M is given by

q)i(q]f—lvqkaqk-i-l) :0, 1= 1,...,71,

such that C := (aa‘b ) is invertible.
dk+1

Definition

The implicit system of second order difference equations ®(qx_1, qr, qr+1) =
0,7=1,...,n, is variational if and only if there is a regular discrete La-
grangian Lg : @ X Q — R such that both systems

D(qk—1,9k,qk+1) =0 and  D1L4(qx, qe+1) + D2La(qr—1,q1) =0

admit the same solutions.



Proposition

The explieit-SOdE— 1 =F(qr—151> implicit SOdJE M C Q x Q x Q

defined by ®(gx—1, gk, gx+1) = O is variational if and only if there is a local

diffeomorphism F': Q x Q — T™(Q over the identity such that m{srr)
Im((F x F)|,,) is a Lagrangian submanifold of (T%#Q x T*Q,q).

(implicit)

FxF T*QXT*Q

Mc——QxQxQ—QxQxQxQ

FxF)oll
(explicit) T ( ) ar*Q

QxQ i T*Q




We get the implicit discrete Helmholtz conditions

OF; 9k ) = OF} i ),
aQJ qk—1,4k OQZ dk—1,9k
OF, OF, 98" 1) o
anl (an Qk+1) aQQ (qk7 qk+1) aq%{ (C )7‘ same with 2 7,
OF; oP"

8QJ

Q1

(Qk 1,%) 8@2 (kaQk-l—l)ai

-

l
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Variationality of continuous constrained systems

Let C C T'Q be a submanifold that can be locally described by

“free” velocities
5o a1 a
¢ =9, ¢ )

“dependent” velocities

Let I" € X(C) be a SODE. Locally,



Definition (Barbero-Lifian, Farré Puiggali, Martin de Diego (2015))
A SODE T on C C TQ is variational if there exists an immersion
F:C — T*Q over @ such that Im(TF oT') is an isotropic manifold
of (TT*Q,drwq).

TC r 77+

o TEFer -

C £ TQ

Theorem (Barbero-Liiian, Farré Puiggali, Martin de Diego (2015))
If a SODE T on C'is variational, then there exists a Lagrangian L: TQ — R
such that the integral curves of I are those solutions (g(t), ¢(t)) of the
Euler-Lagrange equations that stay on C.



Variationality of discrete constrained systems

Let Cy C @ X @ be a submanifold defined by the discrete constraints
@i =™ (@j—1> 1)
“free” components
« af i a
ar =9 (Gh-1, o)
~~

“dependent” components

Let I'y: Cqg — C4 x Cy be an explicit second order difference equation
on Cy, that is,

eCy €Cy eCy

Ca(gr-1,91) = (qk—1, k> @ Caare—1,qx)) € Qa



Given an immersion F': Cy — T*(Q we define ypr := (F' x F) o'y, as
shown in the following commutative diagram:

Cq x Cy ki T*Q X T*Q

Ty T % J/QT* Q
Cy £ T*Q
OK%\ %
Q
Definition

A SOdE I'; on (Y is variational if there exists an immersion F': Cy —>
T*@ such that Im(vg,) is an isotropic submanifold of (7T#Q xT7*Q, Q).

As before, this leads to discrete Helmholtz conditions for constrained

systems.



The meaning of variationality for constrained systems

If the constrained SOdE I'; on Cy is variational, then we have an isotropic
submanifold Im(vyg,) of (T7Q x T*Q,Qq). It can be extended to a
Lagrangian submanifold of (7*Q x T*Q,q) and it is possible to find a
discrete Lagrangian Lg: @ x Q — R such that its (free) dynamics, when
restricted to Cy, coincide with the original SOdE T',.

Some natural questions:

1. Given a continuous variational SODE I" on a submanifold C C T'Q),
find integrators I'y that are also variational.

2. From the existing integrators for nonholonomic systems, detect the
ones that preserve the variational property.



Example

Discrete Lagrange-d'Alembert (DLA) algorithm (Cortés and Martinez,
2001).

Given a nonholonomic system, that is, a Lagrangian L : T() — R and a
nonintegrable distribution D C T'Q), choose a discrete Lagrangian L4 and
a discrete constraint space D, C Q x Q.

The DLA integrator is then
D1 La(qk, Gk+1) + D2La(qk—1, k) = Xaw® (k) ,
wg(ka Qk—i-l) == 07

where A\, are Lagrange multipliers, w® are the constraint one-forms, and
wq are a discretization of the contraint one-forms.



Particular example: the vertical rolling disk.

The continuous constrained system is variational: for example, two alter-
native immersions F': C' — T*(Q are

F1(07 (p7 l’? y’ 0‘7 <p) = (97 (707 x? y? 29" gb’ 07 0)7

, 0 6> 0 6
F2 9a80a$7?/,9a85 = 0,30,5[7,3/,*.,@—7, 1+COS@ "‘Sin@ s ey .
( ) - 257 ( () () e
Together with the constrained SODE T' (continuous) for the rolling disk,

both provide isotropic submanifolds of T7T™*(Q).

On the discrete side, we consider the DLA equations with midpoint dis-
cretizations for the constraints (L does not depend on the positions).

We might ask whether the discretizations of F; and F5 could serve to
show that the discrete system is variational.



Define F14: Cqg — T*Q as a discretization of Fi:

Fa1(Or—1, 0k—1,Th—1, Yo—1, 0k, 1) = (91@71,%71,%7172/1@71,

291<; —Ok—1 Pk — Pr—1

. : 0, o)

This gives rise to an isotropic submanifold of 7T*Q x T*(@, so the discrete
constrained system is variational.

However, if we take a discretization of Fb, it does not give rise to an
isotropic submanifold.

Now change the discretization from midpoint to initial point (for the DLA
only; F} does not depend on the positions). Then F4 does not give an
isotropic submanifold.



iGracias!



