On Marsden-Ratiu Reduction

Hernán Cendra, UNS

Mar del Plata, September 26-30, 2017

- Background
- Main Result of Marsden-Ratiu Reduction
- More Examples and Generalizations

Background

Reference of the main article on the subject:

Marsden, J.E. and Ratiu, T.S. [1986], Reduction of Poisson manifolds. Lett. Math. Phys., 11, pag 161 to 169

Basic notation

M manifold, $N\subseteq M$ submanifold, $\varphi:N\rightarrow M$ inclusion,

 $B \subseteq TM | N$ vector subbundle,

 $F = TN \cap B.$

Hypothesis. F is an integrable regular distribution which defines a surjective submersion onto orbit space

$$\nu: N \to \bar{N}.\tag{1}$$

Define the space of *B*-invariant functions as follows

$$C^{\infty}(M)^B = \{ f \in C^{\infty}(M) : df | B = 0 \}.$$

$$(2)$$

Observation (a) $\nu^* : C^{\infty}(\bar{N}) \to C^{\infty}(N)^F$ is a ring isomorphism (b) If B = 0 then $C^{\infty}(M)^B = C^{\infty}(M)$; $C^{\infty}(\bar{N}) = C^{\infty}(N)^F$ (c) If M = N then B = F and $\nu^* : C^{\infty}(\bar{M}) \to C^{\infty}(M)^B$ (d) One can prove that $\varphi^* : C^{\infty}(\bar{M})^B \to C^{\infty}(M)^F$ is a surjective ring morphism.

Example. Symplectic reduction can be studied from this perspective, as we will show next.

 (P,ω) symplectic manifold

 ${\cal G}$ acts on ${\cal P}$ freely and properly by symplectomorphisms

 $J:P\to \mathfrak{g}^*$ equivariant momentum map, μ regular value of J

Background

 G_{μ} isotropy subgroup acts freely and properly on $J^{-1}(\mu)$ Assume that G and G_{μ} are connected, for simplicity Now let us interpret M, N, φ, ν as follows

$$\begin{split} M &= P \\ N &= J^{-1}(\mu) \\ \varphi &= i_{\mu}, i_{\mu} : J^{-1}(\mu) \to P \text{ inclusion} \\ \text{Define } B &\subseteq TP | J^{-1}(\mu) \text{ by } B_x := T_x Gx, \text{ for } x \in J^{-1}(\mu) \\ \text{Since } F &= TJ^{-1}(\mu) \cap B \text{ one can prove that } F_x = T_x (G_{\mu}x) \\ C^{\infty} (J^{-1}(\mu))^{G_{\mu}} &= C^{\infty} (J^{-1}(\mu))^F, \text{ that is, } G_{\mu}\text{-invariance} \equiv F\text{-invariance} \end{split}$$

 (P_{μ}, ω_{μ}) , reduced symplectic space, $P_{\mu} = \bar{N}$

If f, g are *B*-invariant, that is

$$f,g \in C^{\infty}(P)^B \tag{3}$$

then $f|J^{-1}(\mu), g|J^{-1}(\mu)$ are *F*-invariant, that is

$$f|J^{-1}(\mu), g|J^{-1}(\mu) \in C^{\infty}(J^{-1}(\mu))^F.$$
 (4)

and $f|J^{-1}(\mu), g|J^{-1}(\mu)$ pass to the quotient $f_{\mu}, g_{\mu} \in C^{\infty}(P_{\mu})$. Using the Marsden-Weinstein (symplectic) reduction the following formula obtains

$$\{f,g\}_P(x) = \{f_\mu, g_\mu\}_{P_\mu}(p_\mu(x)),\tag{5}$$

for all $x \in J^{-1}(\mu)$.

Is it possible to obtain a similar formula in the general case?

Main Result of Marsden-Ratiu Reduction We shall use the notation introduced before. In addition, we assume that there is a Poisson structure $\{,\}$ on M.

By definition $B \subseteq TM | N$ is canonical if the following condition is satisfied,

 $f,g \in C^{\infty}(M)^B$ implies that $\{f,g\}_M \in C^{\infty}(M)^B$.

For instance, the bundle B defined in the example of symplectic reduction is canonical.

In general, if B is canonical one can construct a bracket on \bar{N} as follows.

First, for given $\overline{f}, \overline{g} \in C^{\infty}(\overline{N})$ there are uniquely determined $f, g \in C^{\infty}(N)^F$ defined by $f = \nu^* \overline{f}, g = \nu^* \overline{g}$.

Choose $f^B, g^B \in C^{\infty}(M)^B$ using the surjectivity of φ^* . The main result in Marsden-Ratiu reduction is the following.

Main Result of Marsden-Ratiu Reduction

Theorem. The expression $\{\bar{f}, \bar{g}\}_{\bar{N}}(\nu(x)) = \{f^B, g^B\}_M(x)$ gives a well defined bracket on \bar{N} if and only if the following M-R condition is satisfied

$$\sharp(B^{\circ}) \subseteq TN + B \tag{6}$$

Observation.

(a) If B = 0 the M-R condition is equivalent to $\sharp(B^{\circ}) \subseteq TN$, that is, N is a Poisson submanifold of M. In this special case $C^{\infty}(M)^B = C^{\infty}(M)$ and N is isomorphic to \overline{N} .

(b) In the article:

Falceto, F. and Zambon, M. [2008], An extension of the Marsden-Ratiu reduction for Poisson manifolds, Lett. Math. Phys. 85, pag. 203 to 219,

it has been proven that if B is canonical and $B \neq 0$ then $\sharp(B^{\circ}) \subseteq TN$ is satisfied. This leads to a certain simplification and extension of the Marsden-Ratiu theorem, A = A = A = A

Some examples

(a) $M = N = T^*G$; B tangent space to the orbits of the left action of G on T^*G . Then $\bar{N} = \mathfrak{g}^*$ with the Lie-Poisson left bracket.

(b) *M* Poisson manifold; $G \times M \to M$ left canonical action with equivariant momentum map *J*; μ regular value of *J*; $N = J^{-1}(\mu)$; G_{μ} isotropy subgroup; *B* tangent space to the *G*-orbits. Then $\bar{N} = J^{-1}(\mu)/G_{\mu}$ This example generalizes example (a).

(c) M as in example (b) $N = J^{-1}(\mathcal{O})$ where \mathcal{O} is a coadjoint orbit; B tangent space to the G-orbits. Then \overline{N} is diffeomorphic to N/G.

All these examples and many others appear in the article by Marsden and Ratiu

Generalization

In Cendra, H., Ratiu, T.S. and Yoshimura, H. (work on Dirac-Weinstein reduction, in progress) it has been proven that Marsden-Ratiu reduction is a case of Bivector reduction of Dirac vector bundles.