On Marsden-Ratiu Reduction

Hernán Cendra, UNS

Mar del Plata, September 26-30, 2017

- Background
- Main Result of Marsden-Ratiu Reduction
- More Examples and Generalizations

Reference of the main article on the subject:
Marsden, J.E. and Ratiu, T.S. [1986], Reduction of Poisson manifolds. Lett. Math. Phys., 11, pag 161 to 169

Basic notation

M manifold, $N \subseteq M$ submanifold, $\varphi: N \rightarrow M$ inclusion,
$B \subseteq T M \mid N$ vector subbundle,
$F=T N \cap B$.
Hypothesis. F is an integrable regular distribution which defines a surjective submersion onto orbit space

$$
\begin{equation*}
\nu: N \rightarrow \bar{N} . \tag{1}
\end{equation*}
$$

Define the space of B-invariant functions as follows

$$
\begin{equation*}
C^{\infty}(M)^{B}=\left\{f \in C^{\infty}(M): d f \mid B=0\right\} \tag{2}
\end{equation*}
$$

Observation

(a) $\nu^{*}: C^{\infty}(\bar{N}) \rightarrow C^{\infty}(N)^{F}$ is a ring isomorphism
(b) If $B=0$ then $C^{\infty}(M)^{B}=C^{\infty}(M) ; C^{\infty}(\bar{N})=C^{\infty}(N)^{F}$
(c) If $M=N$ then $B=F$ and $\nu^{*}: C^{\infty}(\bar{M}) \rightarrow C^{\infty}(M)^{B}$
(d) One can prove that $\varphi^{*}: C^{\infty}(\bar{M})^{B} \rightarrow C^{\infty}(M)^{F}$ is a surjective ring morphism.

Example. Symplectic reduction can be studied from this perspective, as we will show next.
(P, ω) symplectic manifold
G acts on P freely and properly by symplectomorphisms $J: P \rightarrow \mathfrak{g}^{*}$ equivariant momentum map, μ regular value of J
G_{μ} isotropy subgroup acts freely and properly on $J^{-1}(\mu)$
Assume that G and G_{μ} are connected, for simplicity
Now let us interpret M, N, φ, ν as follows
$M=P$
$N=J^{-1}(\mu)$
$\varphi=i_{\mu}, i_{\mu}: J^{-1}(\mu) \rightarrow P$ inclusion
Define $B \subseteq T P \mid J^{-1}(\mu)$ by $B_{x}:=T_{x} G x$, for $x \in J^{-1}(\mu)$
Since $F=T J^{-1}(\mu) \cap B$ one can prove that $F_{x}=T_{x}\left(G_{\mu} x\right)$
$C^{\infty}\left(J^{-1}(\mu)\right)^{G_{\mu}}=C^{\infty}\left(J^{-1}(\mu)\right)^{F}$, that is, G_{μ}-invariance \equiv F-invariance
$\left(P_{\mu}, \omega_{\mu}\right)$, reduced symplectic space, $P_{\mu}=\bar{N}$

If f, g are B-invariant, that is

$$
\begin{equation*}
f, g \in C^{\infty}(P)^{B} \tag{3}
\end{equation*}
$$

then $f\left|J^{-1}(\mu), g\right| J^{-1}(\mu)$ are F-invariant, that is

$$
\begin{equation*}
f\left|J^{-1}(\mu), g\right| J^{-1}(\mu) \in C^{\infty}\left(J^{-1}(\mu)\right)^{F} \tag{4}
\end{equation*}
$$

and $f\left|J^{-1}(\mu), g\right| J^{-1}(\mu)$ pass to the quotient $f_{\mu}, g_{\mu} \in C^{\infty}\left(P_{\mu}\right)$.
Using the Marsden-Weinstein (symplectic) reduction the following formula obtains

$$
\begin{equation*}
\{f, g\}_{P}(x)=\left\{f_{\mu}, g_{\mu}\right\}_{P_{\mu}}\left(p_{\mu}(x)\right) \tag{5}
\end{equation*}
$$

for all $x \in J^{-1}(\mu)$.
Is it possible to obtain a similar formula in the general case?

Main Result of Marsden-Ratiu Reduction We shall use the notation introduced before. In addition, we assume that there is a Poisson structure $\{$,$\} on M$.

By definition $B \subseteq T M \mid N$ is canonical if the following condition is satiesfied,
$f, g \in C^{\infty}(M)^{B}$ implies that $\{f, g\}_{M} \in C^{\infty}(M)^{B}$.
For instance, the bundle B defined in the example of symplectic reduction is canonical.

In general, if B is canonical one can construct a bracket on \bar{N} as follows.

First, for given $\bar{f}, \bar{g} \in C^{\infty}(\bar{N})$ there are uniquely determined $f, g \in C^{\infty}(N)^{F}$ defined by $f=\nu^{*} \bar{f}, g=\nu^{*} \bar{g}$.
Choose $f^{B}, g^{B} \in C^{\infty}(M)^{B}$ using the surjectivity of φ^{*}. The main result in Marsden-Ratiu reduction is the following.

Theorem. The expression $\{\bar{f}, \bar{g}\}_{\bar{N}}(\nu(x))=\left\{f^{B}, g^{B}\right\}_{M}(x)$ gives a well defined bracket on \bar{N} if and only if the following M-R condition is satisfied

$$
\begin{equation*}
\sharp\left(B^{\circ}\right) \subseteq T N+B \tag{6}
\end{equation*}
$$

Observation.

(a) If $B=0$ the M-R condition is equivalent to $\sharp\left(B^{\circ}\right) \subseteq T N$, that is, N is a Poisson submanifold of M. In this special case $C^{\infty}(M)^{B}=C^{\infty}(M)$ and N is isomorphic to \bar{N}.
(b) In the article:

Falceto, F. and Zambon, M. [2008], An extension of the Marsden-Ratiu reduction for Poisson manifolds, Lett. Math. Phys. 85, pag. 203 to 219,
it has been proven that if B is canonical and $B \neq 0$ then $\sharp\left(B^{\circ}\right) \subseteq T N$ is satisfied. This leads to a certain simplification and extension of the Marsden-Ratiu theorem.

Some examples

(a) $M=N=T^{*} G ; B$ tangent space to the orbits of the left action of G on $T^{*} G$. Then $\bar{N}=\mathfrak{g}^{*}$ with the Lie-Poisson left bracket.
(b) M Poisson manifold; $G \times M \rightarrow M$ left canonical action with equivariant momentum map $J ; \mu$ regular value of J;
$N=J^{-1}(\mu) ; G_{\mu}$ isotropy subgroup; B tangent space to the G-orbits. Then $\bar{N}=J^{-1}(\mu) / G_{\mu}$ This example generalizes example (a).
(c) M as in example (b) $N=J^{-1}(\mathcal{O})$ where \mathcal{O} is a coadjoint orbit; B tangent space to the G-orbits. Then \bar{N} is diffeomorphic to N / G.

All these examples and many others appear in the article by Marsden and Ratiu

Generalization

In Cendra, H., Ratiu, T.S. and Yoshimura, H. (work on Dirac-Weinstein reduction, in progress) it has been proven that Marsden-Ratiu reduction is a case of Bivector reduction of Dirac vector bundles.

