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Section I: Directed Acyclic Graphs and Bayesian Networks

De�nition of Directed Acyclic Graphs

DAG con�gurations.

Bayesian networks

d-separation

The Markov Factorization Theorem.
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DIRECTED ACYCLIC GRAPHS (DAGS)

A graph consists of a set V of vertices (or nodes) and a set E of
edges (or links) that connect some pairs of vertices. ..

A directed graph is a graph consisting of directed edges ; i.e. each
edge is marked by a single arrowhead.

A directed path in a graph is a sequence edges, each edge pointing
to a node from which the next edge emerges.

A path in a graph is a sequence (directed or not) of edges such that
each pair of consecutive edges in the sequence share one node.

A cycle is any directed path that starts and ends at the same node.

A graph that contains no directed cycles is called acyclic
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De�nition. the ordering (V1, ...,VK ) agrees with the DAG i¤
V i � fV1, ...,Vi�1g does not include any descendant of Vi . for each i .
Example.

(V0,V1,V2,V3) agrees with the DAG

(V0,V2,V1,V3) agrees with the DAG,

(V1,V0,V2,V3) does not agree with the DAG.
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DAG CONFIGURATIONS
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What are we aiming for....

Suppose you know that the law p of V = fV1, ...,Vkg satis�es

p (V ) =
k

∏
i=1
p (Vi jPAi ) Markov Decomposition (1)

for some subsets PAi � fV1, ...,Vi�1g .

Your goal is to determine all conditional independencies

X q Y jZ

between any three disjoint subsets X ,Y and Z of V that are
logically implied by Markov decomposition.

Notation: X q Y jZ , i¤. X and Y are conditionally independent
given Z
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What are we aiming for....

We will learn a graphical algorithm to achieve your goal without any
calculations!

Algorithm:

1 Construct the DAG with nodes V and with arrows from each element
of PAi to Vi (for all i)

2 Are X and Y d-separated by the set Z in the DAG?

1 If yes, conclude that X q Y jZ

2 If not, conclude that X q Y jZ is not logically implied by the Markov
decomposition.
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Disclaimer: all random vectors are discrete, i.e. absolutely
continuous with respect to the counting measure
Notational remark. p stands for the mass probability of some
random vector. Which vector p is the law for, will be clear from its
variables. Thus, for example,

p (v) stands for Pr (V = v)
p (y jx) stands for Pr (Y = y jX = x)

p (V ) stands for the density of V evaluated at a random value V ,
etc. Thus, for example,

p (V ) =
k

∏
i=1
p (Vi jPAi )

is equivalent to

Pr (V = v) =

(
k

∏
i=1
Pr (Vi = v jPAi = pai )

)
Ifp(�)g (v)

for all v 2 Rk
(Institute) Congreso Monteiro, 2009 9 / 169



d-separation

De�nition: A path is said to be d-separated, blocked or rendered
inactive, by a set of nodes Z if and only if

1 the path contains a chain Vi ! Vm ! Vj or a fork Vi  Vm ! Vj
such that the middle node Vm is in Z ,

or

2 the path contains a collider Vi ! Vm  Vj , such that neither Vm nor
its descendants are in Z .

De�nition: A set of nodes Z is said d-separate a set of nodes X
from another set of nodes Y if and only if Z blocks every path from
a node in X to a node in Y .

Notation:

(X q Y jZ )G i¤ Z d-separates X from Y in G
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d-separation

A path is said to be d-connected by a set of nodes Z i¤ it is not
d-separated by Z

Notational remark:

1 (X q Y jZ )G means X and Y are d-separated by Z

2 (X q Y jZ )P means X and Y are conditionally independent given Z
when they have joint distribution P.
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X

U Y

X U Y

Z = {U} then path between X and Y
blocked by Z

Z= { } then path between X and Y is
unblocked by Z
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X

U

Y

Z = {U} then path between X and Y
is unblocked by Z

Z= { } then path between X and Y is
blocked by Z
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d-separation and d-connection: more examples

(V6 q V8j fV7,V4,V2g)G and (V6 q V8j fV7,V4,V1g)G .

(V6 /qV8j fV7,V4g)G because V4 unblocks the path
V6,V3,V1,V4,V2,V5,V8.
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The main result

De�nition: Given a DAG G with nodes V = fV1, ...,Vkg and a law
P of V , we say that G represents P i¤

p (V ) =
k

∏
i=1
p (Vi jPAi ) (2)

where PAi are the parents of Vi on the DAG.

De�nition: a DAG and the collection of all P 0s represented by it is
called a Bayesian Network

Theorem: Verma and Pearl (1988) and Geiger (1988).

Let X ,Z and Y be three disjoint sets of nodes in a DAG G . Then

(X q Y jZ )G , (X q Y jZ )P for all P represented by G
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Remarks

d�separation encodes all conditional independencies logically implied
by the Markov factorization of any P that is represented by the DAG.

DAGs carry assumptions through their missing arrows, not through
their existing arrows.

If (X /qY jZ )G then there exist at least one law P represented by G
such that (X /qY jZ )P .

Be careful: (X /qY jZ )G does not imply that (X /qY jZ )P holds for all
laws P represented by G .

Example: a complete DAG represents all laws P. In complete DAGS
no (X ,Z ,Y ) satis�es d�separation, yet for some laws (X q Y jZ )P
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X:smoke U: arterial

clog
Y:coronary

disease

Z = {U}  then path between X and Y
blocked by Z

Z= { } then path between X and Y is
unblocked by Z
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X: carrying
matches

U:smoke Y: coronary
disease

Z = {U}  then path between X and Y
blocked by Z

Z= { } then path between X and Y is
unblocked by Z

(Institute) Congreso Monteiro, 2009 18 / 169



X: gene

U: coronary

disease

Y: smoke

Z = {U}  then path between X and Y is
unblocked by Z

Z= { } then path between X and Y is
blocked by Z
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X: gene
U: coronary

disease

Y: smoke

Z = {W} then path between X and Y is
unblocked by Z

Z = {U,W}  then path between X and Y is
unblocked by Z

Z= { } then path between X and Y is blocked by
Z

W: diuretic

medication
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Section II: Causal Diagrams and Structural Equation
Models

Structural equations models (SEM)

Causal diagrams and causal DAG�s

Intervention DAG�s and SEM�s

Counterfactuals

Disturbance independence and the no-common causes assumptions
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Structural equations

Suppose that given V = fV1, ...,Vkg ,

1 Each Vj is determined by:

1 a known subset PAj of V�
�
Vj
	
and,

2 other variables Uj .

Denote the deterministic map between (PAj ,Uj ) and Vj by

Vj = fj (PAj ,Uj ) (3)

(3) is called a structural equation.

The variables Uj are called disturbances or errors
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What makes an equation structural?

Consider the following structural equations for T and S where
S = indicator that the fasten your sit belt sign is on,
T = the airplane experiences turbulences.

T = UT
S = 1� (1� T ) (1� US )

UT is the indicator that a condition that generates a turbulence
happened
US is the indicator that an event, other than turbulence, that prones
the captain to turn on the sign, happened

The system is algebraically equivalent to the system

S = U�S
T = S + U�T

with U�S = 1� (1� UT ) (1� US ) and U�T = �US (1� UT )
However, the equations in the �rst system are structural and the
second are not? Why????
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What makes an equation structural?

The reason is because structural equations indicate the mechanisms
by which the variables are created by nature. If the right hand side of
the equation is a non-trivial function of a variable, then it means that
nature will use that variable to create the variable in the left hand
side of the equation.

The equations

T = UT
S = 1� (1� T ) (1� US )

are structural because they tell us how nature "creates" T from S
and other factors and how it creates S from T and other factors.

1 The �rst equation tells us that to "create" a turbulence, nature does
not care if the sit belt sign is on.

2 The second equation tells us that to "make" a sit belt sign to be "on"
it matters if there is a turbulence
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What makes an equation structural?

In contrast, the equations

S = U�S
T = S + U�T

are not structural because

1 the �rst equation tells that the presence of an "ON" sign is not
a¤ected by the occurrence of a turbulence.

2 the second equation implies that the occurrence of a turbulence
depends on whether or not the sign is on. In particular, the equation
implies the ridiculous mechanism whereby a turbulence will always be
formed when the sign is on.and the "external factor" U�T is 0.
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Structural equations model

De�nition: A structural equation model (SEM) is a the model
that assumes:

1 a complete set of k structural equations

Vj = fj
�
PAj ,Uj

�
, j = 1, ..., k (4)

such that for each �xed value of (U1, ...,Uk ) , the system has a unique
solution V1, ...,Vk

2 no element of fV1, ...,Vkg is a determinant of Uj for any j
3 possibly, some facts about the determinants of the U 0j s

Examples of item 3
1 no pair

�
Uj ,Ul

�
shares common determinants

2 the pair
�
Uj ,Ul

�
only shares (unknown) common determinants

3 Uj is a determinant of Ul
4 Uj is equal to Ul
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Types of structural equation models

A SEM is further subclassi�ed depending on the assumptions made
about the f 0j s

1 If all f 0j s are assumed to be unknown then the model is called a
non-parametric structural equation model.

2 If all f 0j s are assumed to be linear functions of the PA
0
j s and additive

on the U 0j s then the model is called a linear structural equation
model.

The only assumptions encoded in a non-parametric SEM are the
assumptions that the subset V � PAj does not participate in the
construction of the variable Vj .
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Causal diagrams

De�nition: Given a structural equation with variables V1, ...,Vk , a
causal diagram is a graph with nodes V1, ...,Vk such that it has

1 a solid-line arrow from each node in the set PAj to the node Vj , .for
each j , and

2 a dashed-line bidirected edge between any pair of nodes
�
Vj ,Vk

�
unless the SEM assumes that

1 the corresponding disturbances
�
Uj ,Uk

�
do not share common

determinants, and

2 Uj is not a determinant of Uk

3 Uk is not a determinant of Uj
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Remarks about causal diagrams

1 Causal diagrams are generally taken as a representation of the
associated non-parametric SEM.

2 A causal diagram without double-dashed arcs is one in which every
variable that is a common determinant of two other variables is
included as a V variable of the system
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Causal diagrams

Example 1: price and demand

1 Structural equations

I = fI (UI ) , I = household income

W = fW (UW ) , W = wage rate for producing product A

Q = fQ (P, I ,UQ ) , Q = household demand for product A

P = fP (Q,W ,UP ) , P = unit price for product A

2 Disturbance assumptions. Only UP and UQ share common
determinants
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SEMs and Causal Diagrams

Geneticist Sewall Wright (1921, 1934) was the �rst to use a system of
(linear) equations combined with diagrams to communicate causal
relationships.

He was aware that equations alone were not satisfactory for encoding
causal in�uences because any one equation implies other equations for
the variables in the RHS which do not re�ect the mechanism by
which the variables are determined.

Thus, his bright idea was to append to the equations the causal
diagram which now re�ected univocally the direction in which each
equation ought to be read.
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Recursive SEMs

De�nition: A recursive SEM or Semi-Markovian SEM is a SEM
whose causal diagram is such that when its double-dashed arrows are
deleted, the resulting graph is a DAG.

Property 1: In a recursive SEM: Vl 2 PAj ) Vj /2 PAl

Property 2: In a recursive SEM there exists an ordering V1, ...,Vk
such that given U = fU1, ...,Ukg , the variables in V are determined
recursively, V1 �rst, V2 next, and so on.
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Example 1: smoking and lung cancer

1 Structural equations

G = fG (UG ) , G = genetic trait

S = fS (G ,US ) , S = smoking indicator

T = fT (S ,UT ) , T = amount of tar accumulated in the lung

C = fC (G ,T ,UC ) , C = indicator of lung cancer

2 Disturbance assumptions. No pair of disturbances share a common
determinant
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Example 2: non-compliance in clinical trials

1 Structural equations

W = fW (UW ) , W = factors a¤ecting compliance and response (unmeasured)

Z = fZ (UZ ) , Z = treatment assigned

X = fX (Z ,W ,UX ) , X = treatment received

Y = fY (X ,W ,UY ) , Y = health outcome

2 Disturbance assumptions. No pair of disturbances share a common
determinant. Note that Z is not determined by any other variable
because treatment assignment has been randomized.
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Example 3: sequentially randomized clinical trial. Full
randomization of treatment X and randomization to Z with
probability that depends on observed health history and �rst assigned
treatment

SEM: jointly independent disturbances and

V = fV (UV ) , V = immune status

X = fX (UX ) , X = treatment randomized at baseline

W = fW (X ,V ,UW ) , W = response after �rst treatment

Z = fZ (X ,W ,UZ ) , Z = second randomized treatment

Y = fY (Z ,X ,V ,UY ) Y = response at end of study
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SEM �! CAUSAL DIAGRAM

RECURSIVE SEM �! CAUSAL DIAGRAM IS
DAG + DASHED DOUBLE ARROWS

RECURSIVE SEM +
NO COMMON CAUSES
FOR THE ERRORS

�! CAUSAL DIAGRAM IS
DAG
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Probabilistic SEM

A probabilistic structural equation model is a SEM in which the
disturbances U = (U1, ...,Uk ) are assumed to be random variables.

Of course, if Uj , j = 1, ..., k, is a random variable, then so are the
variables Vj , j = 1, ..., k, of the SEM.

The distribution p (u) of U and a �xed set of structural functions
fj , j = 1, ...k, uniquely determine the distribution of p (v) of
V = (V1, ...,Vk ) .

If U is generated by nature with distribution p (u), then V is
generated by nature with law p (v) .

p (v) is called the observational law of V
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Intervention SEM

A key implicit assumption of SEMs is that modi�cation of one
equation alters the values of the inputs to other equations but not
the functional form of the equations themselves

In a SEM each equation represents an isolated mechanism, if you
intervene and modify one mechanism you do not change the others

(Institute) Congreso Monteiro, 2009 38 / 169



Intervention SEM

A recursive SEM is like an electrical circuit with black boxes, the j th

one receiving the input (PAj ,Uj ) and spitting the output Vj .

If you were to intervene and replace one speci�c black box with
another one, your action will have the e¤ect of altering the input of
the boxes connected to the replaced box but your action will not
a¤ect (i.e. alter) any of these boxes.
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Intervention SEM

This means that if you intervene to modify the mechanism that
creates one variable, you will modify

neither the equations (i.e. mechanisms) that dictate the creation of the
remaining variables in the system nor,

the values of the disturbances (as they are determined by factors
outside the system).

So we can de�ne a new SEM representing how the variables V would
be created in the hypothetical world in which we intervene and force a
subset of V to be �xed at given values.

In such SEM we simply replace the equations that create the
intervened variables with new equations in which each variable is
equal to the given constant
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Intervention SEMs

De�nition: given a SEM

Vj = fj (PAj ,Uj ) , j = 1, ..., k

an intervened SEM with intervened variables Vjl set to vjl ,
l = 1, ..., l� is a new SEM de�ned by the structural equations

Vj = fj (PAj ,Uj ) , j /2 fj1, ..., jl �g
Vjl = vjl , l = 1, ..., l

�

The causal diagram of an intervention SEM is identical to one of
the original SEM but in which all arrows pointing to the intervened
variables (including any dashed double-edges pointing to it, if they
exist) are removed.
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Intervention causal diagrams

Example: suppose that we intervene in the system represented by the
DAG

to force X = x . Then the intervened DAG is
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Counterfactual variables and intervention distributions

Consider a probabilistic intervened SEM in which we intervene to
set X to x .

We denote the variables solving the new system with

Vx = (Vx ,1, ....,Vx ,k )

The variables Vx ,j are referred to as potential variables or
counterfactuals.

We de�ne the intervention distribution

px (v) � Pr (Vx = v)
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Counterfactual variables and intervention distributions

Note that the intervention distribution

px (v) � Pr (Vx = v)

is the probability that we would observe that the left hand side variables of
SEM be equal to v in a world in which we impose the action X = x on
every possible realization of the disturbances U.

This law is NOT generally equal to

p (v jx) � Pr (V = v jX = x)

which is the conditional probability that V = v given X = x . This

is the probability that V = v among those that we observe to have
X = x
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Condl vs intervention distbs are not the same. Example.

Consider the SEM

Z = Uz , X = Z + Ux

UZ q UX both Bernoulli with success probabilities πz and πx .

Then, for v = (z , x) = (1, 1) , we have

Pr (V = v jX = x) =
Pr (Z = 1,X = 1)

Pr (X = 1,Z = 1) + Pr (X = 1,Z = 0)

=
πz (1� πx )

πz (1� πx ) + πx (1� πz )

On the other hand, px (v) = Pr (Zx = 1) is the probability that
Z = 1 under the modi�ed SEM

Z = Uz , X = 1

But in this system, Z = 1 with probability πz , so px (v) = πz .

(Institute) Congreso Monteiro, 2009 45 / 169



Independence and the no-common causes assumption

Assumption: if the causal diagram of a recursive probabilistic SEM
has no dashed bi-directed edges then the disturbances U1, ...,Uk
are mutually independent..

Recall that a causal diagram without double-dashed arcs is one in
which every variable that is a common determinant of two other
variables is included as a V variable of the system
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Markovian SEMs

De�nition: a Markovian SEM is a probabilistic recursive SEM
whose causal diagram does not have dashed bi-directed edges, i.e.
it is a DAG.

Property: if a SEM is Markovian, then any intervention SEM derived
from it is also Markovian.

Proof: immediate. The error vector U is the same in the original and
the intervention SEM of a recursive SEM is also recursive.
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Section III: identi�ability of the intervention law,
preliminaries

The Causal Markov Condition

The positivity condition

Trimmed graphs

The three rules of the "do calculus"

The back-door theorem
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Causal Markov condition

Theorem (the causal Markov condition): The DAG of a
Markovian SEM

Vj = fj (PAj ,Uj ) , j = 1, ..., k

represents the joint law of the variables V = V1, ...,Vk , i.e.

p (v) =

(
k

∏
j=1
p (vj jpaj )

)
Ifp(�)>0g (v)
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Proof of the causal Markov condition

Proof: Let the order V1, ...,Vk be consistent with the DAG. Then,
independence of the errors and recursiveness implies that

Uj q V j�1 (5)

where V j�1 = (V1, ...,Vj�1) . Then,

p (v) =
n

Πk
j=1 Pr

�
Vj = vj jV j�1 = v j�1

�o
Ifp(�)>0g (v)

But

Pr
�
Vj = vj jV j�1 = v j�1

�
= Pr

�
fj (paj ,Uj ) = vj jV j�1 = v j�1

�
= Pr (fj (paj ,Uj ) = vj ) by (5)

= gj (vj , paj )

Which proves that Pr
�
Vj = vj jV j�1 = v j�1

�
depends only on paj ,

hence

Pr
�
Vj = vj jV j�1 = v j�1

�
= Pr (Vj = vj jPAj = paj )

This concludes the proof...
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The positivity condition

Our next Theorem establishes that if the following positivity condition
holds, px 0 (�) is identi�ed (i.e. it is a functional of) the observational
law p (�) of V .

The positivity condition for X = x 0. Given a Markovian SEM with
variables V , a subset X = fX1, ...Xlg of V , and a �xed constant
vector x 0 = (x 01, ..., x

0
l ) , it holds that for every paj such that

Pr
�
PAXj = paj

�
> 0,

Pr
�
Xj = x 0j jPAXj = paj

�
> 0, j = 1, ..., l (6)

The condition stipulates that, regardless of the values of the parents
of Xj , in the observational world there is always a positive chance that
Xj will take the selected value x 0j .
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The identi�cation theorem

Theorem (identi�cation): if the positivity condition for X = x 0

holds then px 0 (�) is absolutely continuous with respect to p (�) .and

px 0 (v) =
n

Πj :vj /2x 0p (vj jpaj )� Ifx 0g (x)
o
Ifp(�)>0g (v) (7)

Equivalently, the likelihood ratio satis�es

px 0 (v )
p(v ) Ifp(�)>0g (v) =

Ifx 0g(x )
Πs
i=1p(xi jpai )

Ifp(�)>0g (v)

De�nition: The formula on the right hand side of (7) is called the
intervention formula.
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Remarks on the identi�cation theorem

The intervention formula

n
Πj :vj /2x 0p (vj jpaj )� Ifx 0g (x)

o
Ifp(�)>0g (v)

is a functional of p (�)

Corollary: if the positivity condition for X = x 0 holds,

If all the variables V are measured )
p (�) can be estimated consistently )
px 0 (�) can be estimated consistently
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Identi�ability from a subset of the nodes of a causal DAG.

In practice, however, only a subset B of the variables in the causal
DAG are measured and we can only hope to estimate consistently
p (b).

Hence we can estimate consistently px (y) if it depends on p (v) only
through p (b) but not otherwise

The following question is then ultra important in practice.

Suppose that in a causal DAG, B � V ,X � B, Y � B
and X \ Y = ?
What are su¢ cient conditions under which the intervention
law px (y) is a functional of p (b) only?

.
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Su¢ cient conditions for identi�cation

There exist a number of graphical rules that one can use to check for
such su¢ cient conditions for identi�ability.

The su¢ cient conditions are derived from three key graphical results
for causal DAGs, known as the rules of the do (or intervention)
calculus. So we will start by stating these rules

The rules are indeed Theorems and they are proved in Pearl (1995,
Biometrika).
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Trimmed graphs: preliminary notation.

Let X ,Y and Z be arbitrary disjoint sets of nodes of a DAG G .

Convention 1: GX is the graph obtained by deleting from G all
arrows pointing to nodes in X

Convention 2: GX is the graph obtained by deleting from G all
arrows emerging from nodes in X

Convention 3: GX ,Z is the graph obtained by deleting from G all
arrows pointing to nodes in X and all arrows emerging from nodes in
Z
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Rules of do calculus (Adapted from Pearl, Biometrika,
1995)

Let Y ,Z and W be disjoint subsets in a causal DAG G .

Rule 1: d-separation.(not really a causal result)

if (Y q Z jW )G then p (y jz ,w) = p (y jw) ,

Rule 2: back-door (when is observing the same as intervening).
Suppose

if (Y q Z jW )GZ then pz (y jw) = p (y jz ,w)

for all (z ,w) such that p (z ,w) > 0
Rule 3: action irrelevance (about actions that have no e¤ects)

if (Y q Z )GZ then pz (y) = p (y)
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Rules of do calculus in terms of counterfactuals

Rule 1:d-separation.(not really a causal result)

if (Y q Z jW )G then.
Pr (Y = y jZ = z ,W = w) = Pr (Y = y jW = w)

Rule 2: back-door (when is observing the same as intervening)

if (Y q Z jW )GZ then
Pr (Yz = y jWz = w) = Pr (Y = y jZ = z ,W = w)

Rule 3: action irrelevance (about actions that have no e¤ects)

if (Y q Z )GZ then
Pr (Yz = y) = p (Y = y)
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Remark about the rules as Pearl stated them

Pearl stated the rules not quite as we did.

Rule 3 in Pearl (1995) is slightly more general. Also,

Pearl used
1 GX instead of G
2 px ,z instead of pz , and
3 px instead of p

His results are just a re-statement of ours when we regard the
"observational" DAG as the DAG with X intervened at x and the
observational p as the intervention law px
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Let�s recall the rules

Rule 1:d-separation.(not really a causal result)

if (Y q Z jW )G then.
Pr (Y = y jZ = z ,W = w) = Pr (Y = y jW = w)

Rule 2: back-door (when is observing the same as intervening)

if (Y q Z jW )GZ then
Pr (Yz = y jWz = w) = Pr (Y = y jZ = z ,W = w)

Rule 3: action irrelevance (about actions that have no e¤ects)

if (Y q Z )GZ then
Pr (Yz = y) = p (Y = y)
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Rule 2

If (Y q Z jW )GZ then

pz (y jw) = p (y jz ,w)
or equivalently

Pr (Yz = y jWz = w) = Pr (Y = y jZ = z ,W = w)

In GZ the only paths from Z to Y are through paths that start with
an edge that points into Z . These paths are called back-door paths.

The condition (Y q Z jW )GZ says that all back-door paths from Z
to Y are blocked by W .

The essential part of Rule 2 is so important, that it deserves the
quali�cation of Theorem. We re-state it as such now.
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The back-door theorem

Theorem: Let Y ,Z and W be three disjoint set of nodes in a causal
DAG Γ. Then for all (z ,w) : p (z ,w) > 0,

pz (y jw) = p (y jz ,w)
or equivalently

Pr (Yz = y jWz = w) = Pr (Y = y jZ = z ,W = w)

if all back-door paths from Z to Y are blocked by W .
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Example of Rule 2

Back door path between T and C is T ,S ,G ,C
which is blocked by G )

Pr (Ct = c jGt = g) = Pr (C = c jT = t,G = g)
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Let�s recall the rules

Rule 1:d-separation.(not really a causal result)

if (Y q Z jW )G then.
Pr (Y = y jZ = z ,W = w) = Pr (Y = y jW = w)

Rule 2: back-door (when is observing the same as intervening)

if (Y q Z jW )GZ then
Pr (Yz = y jWz = w) = Pr (Y = y jZ = z ,W = w)

Rule 3: action irrelevance (about actions that have no e¤ects)

if (Y q Z )GZ then
Pr (Yz = y) = p (Y = y)
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Remark on Rule 3

In the DAG GZ the only unblocked paths between Z and Y are the
directed paths paths between Z and Y in G

The condition (Y q Z )GZ is then the condition that in DAG G there
are no directed paths between Y and Z

The conclusion Pr (Yz = y) = p (Y = y) implies that Z has no
causal e¤ect on Y ( if we intervene to set Z = z , then regardless of
the value z at which we set Z , the distribution of the outcome will be
the same)

Then the result

if (Y q Z )GZ then Pr (Yz = y) = p (Y = y)

implies that if in the original DAG there is no directed path between
Z and Y then Z has no causal e¤ect on Y .

(Institute) Congreso Monteiro, 2009 65 / 169



First example of Rule 3.

Future actions don�t a¤ect past outcomes (reducing the tar in
your lungs will not reduce how much you smoke)

(S q T )ΓT ) Pr (St = s) = Pr (S = s)
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Second example of Rule 3.

Actions without e¤ects (your sweating does not cause your
inclination-or not- to watch TV)

(S q Y )ΓS ) Pr (Ys = y) = Pr (Y = y)
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Second example of Rule 3.

Actions without e¤ects (your inclination - or not- to buy sport
clothes does not cause your inclination -or not- to watch TV)

(C q Y )ΓC ) Pr (Yc = y) = Pr (Y = y)
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Section IV: identi�ability of the intervention law: the
back-door theorem

The back-door adjustment theorem

the intervention formula
standardized vs crude rates
the regression and the inverse probability weighted forms
the propensity score

Lessons from the back-door theorem
measuring all common causes of treatment and outcome is not always
needed
it is not always ok to adjust for proxies of common causes of treatment
and outcome
it is not always ok to adjust for common correlates of treatment and
outcome
Berkson bias

M-structures
Drop-out in longitudinal studies
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Corollaries of the "do" calculus: the back-door adjustment

Theorem (the back-door adjustment): let X , Y and Z be disjoint
set of nodes in a causal DAG G and suppose that (x , z) are �xed
values such that p (x , z) > 0. If Z is a non-descendant of X that
blocks all back doors between X and Y then

px (y , z) = p (y jx , z) p (z)

Proof: for (x , z) such that p (x , z) > 0 we have

p (y jx , z) p (z) =
= px (y jz) p (z) by the back-door theorem
= px (y jz) px (z) by rule 3 (Z is non-descendant of X )
= px (y , x)
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Corollaries of the "do" calculus: the back-door adjustment

Corollary 1: under the assumptions of the theorem

px 0 (y , z , x) = p (y jx , z) p (z) Ifx 0g (x)

or equivalently

px 0 (y ,z ,x )
p(y ,x ,z ) Ifp()>0g (y , x , z) =

Ifx 0g(x )
p(x jz ) Ifp()>0g (y , x , z)

So we reproduce the intervention formula for the subset Y [X [ Z of
the variables in the DAG!!

(Institute) Congreso Monteiro, 2009 71 / 169



Corollaries of the "do" calculus: the back-door adjustment

Corollary: Under the conditions of the theorem,

px (y) = ∑z p (y jx , z) p (z)
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Which variables we need to identify treatment e¤ects?

It follows from the preceding theorem that to identify px (y) we don�t
need to measure all variables in a causal DAG.

It su¢ ces to measure, besides Y and X , a set Z that

1 are non-descendants of X and,

2 block all the back doors between X and Y .

Variables Z that satisfy the two preceding conditions are said to
satisfy the back-door criterion
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Standardized vs crude risks

The back-door theorem says that if Z satis�es the back-door criterion
then

Pr (Yx = y) = ∑
z
Pr (Y = y jX = x ,Z = z)| {z }
crude stratum-speci�c rates

� Pr (Z = z)| {z }
weights| {z }

standardized rate: weighted averaged of stratum speci�c crude rates
weights are strata prob. in the population

This is di¤erent from

Pr (Y = y jX = x) = ∑
z
Pr (Y = y jX = x ,Z = z)Pr (Z = z jX = x)| {z }

weights| {z }
crude rate: weighted averaged of stratum speci�c crude rates
weights are strata prob. in the supopul. with X equal x
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The regression and the IPW forms

We have seen that when Z meets the back-door criterion

px (y) = ∑
z
p (y jx , z) p (z) and

px 0 (y , z , x)
p (y , x , z)

=
Ifx 0g (x)

p (x jz)
This implies that

E (Yx ) = E fE (Y jX = x ,Z )g

= E
n

Ifxg(X )
Pr(X=x jZ )Y

o
The expressions in the RHS are two forms of the SAME functional
of p (y , x , z)

1 The �rst expression is called the regression form
2 The second expression is called the inverse probability weighted
form

π (z) � Pr (X = x jZ = z) is called the propensity score for trx x
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A: occupation

C: smoking

B:gene

E: tar in lung D: lung cancer

We will next examine which variables satisfy the back door criterion
for the pair (E ,D)

1 A does not satisfy it because it does not block the path E ,C ,D
2 B does not satisfy it for the same reason
3 C does not satisfy it because it unblocks the path E ,A,C ,B,D
4 (A,C ) satis�es it!!. Also, (B,C ) satis�es it!!
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First lesson: measuring all common causes is not always
needed.

Thus, we conclude that

pe (d) = ∑
a

∑
c
p (d je, a, c) p (a, c)

= ∑
b

∑
c
p (d je, b, c) p (b, c)

Thus, to identify pe (d) it su¢ ces to measure

the variables A,C ,E ,D or
the variables B,C ,E ,D.

But we don�t need to measure all three common causes A,B and C
!!!!
This exempli�es how DAGs can be used to help design studies!
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Second lesson: it is not OK to adjust for proxies of
unmeasured common causes

Measuring just A,E ,D or just B,E ,D or just C ,E ,D will not su¢ ce
to identify pe (d) .

In particular, in general,

pe (d) 6= ∑
a
p (d je, c) p (c)

C is a proxy for (i.e. is correlated with) A and B.

This example shows that it is NOT always OK to adjust for proxies of
unmeasured common causes
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Third lesson: it is not always ok to adjust for common
correlates of exposure and disease

C . is correlated with E and D, but

pe (d) = p (d je) by rule 2 because (E qD)GE )
unadjusted rates are correct (no need to measure anything!)

However, C unblocks the path E ,A,C ,B,W ,D, thus in general,

pe (d) 6= ∑ p (d je, c) p (c) ) adjustment for C is incorrect
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Fourth lesson: Berkson bias

The structure of this DAG is known as an M-structure.

The spurious correlation between D and E was induced because we
conditioned on a collider (C)
Any spurious correlation induced by conditioning on colliders is called
Berkson bias
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Other Berkson biases: drop-out in longitudinal studies

Consider the following clinical trial of HIV+ patients

We would like to compute

pe ,c=0 (d)

the rate of disease in the hypothetical world in which everybody took
E = e and nobody dropped out
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The "story" behind the previous DAG

Patients are randomized to treatment or control (E ) (E is a root
node because of randomization)

Patients in the treatment arm are at greater risk of side e¤ects
(nausea, vomiting, etc) and hence of dropping out (arrow from E to
C )

The greater the level of immunosuppression,

1 the greater the risk of AIDS (arrow from U to D)

2 the greater the risk of developing symptoms (fever, weight loss, etc)
(arrow from U to D)

The greater the risk of symptoms the greater the risk of dropping out
(arrow from L to C )
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Drop-out in longitudinal studies

If in the true DAG the dashed arrows are absent, then there is no
directed path from (E ,C ) to D so

pe ,c=0 (d) = p (d) does not depend on e

However, in general,

p (d je, c = 0) depends on e
because the path E ,C , L,V ,D is unblocked by C
Conclusion: restricting the analysis to patients for whom D is not
missing, leads us to incorrectly conclude that E has an e¤ect on D
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Drop-out in longitudinal studies

The e¤ect of (E ,C = 0) is not identi�ed if in the trial we only
measure E ,C and D

However, if we also measure L

Then L blocks all back-doors between (E ,C ) and D and we have that

pe ,c=0 (d) = ∑l p (d je, c = 0, l) p (l)
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Connections with the missing data literature

In our example, the fact that E is a root node implies (by rule 3) that

pe ,c=0 (d) = pc=0 (d je)

So, the mistake in using p (d je, c = 0) to estimate the e¤ect of E on
D is to assume that

p (d je, c = 0) = pc=0 (d je) (8)

In the missing data literature, (8) is known as the assumption
-MCAR- that the D is missing completely at random conditional on E .
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Connections with the missing data literature

We now see that MCAR is tantamount to assuming that there are no
common causes of missingness and disease, an often very very
unrealistic assumption

Notice that the problem of missing D is not resolved by imputing it
from the law p (d je, c = 0)

This imputation will only aggravate the problem because it will make
you believe that (your biased) estimator is very precise thus giving
you more con�dence that your incorrect analysis is correct!

Imputing garbage observations only helps improve the e¢ ciency of
estimators of garbage quantities!!!
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Connections with the missing data literature

The variable L does not intervene in the expression pc=0 (d je) .

However, to be able to identify pc=0 (d je) we need to have measured
L because

pc=0 (d je) = ∑l p (d je, c = 0, l) p (l)

In the missing data literature L is called an auxiliary variable, because
it is a variable that does not intervene in the estimand of interest but
that is needed to estimate it.
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Connections with the missing data literature

In our DAG L and E are d�separated, so p (l je) = p (l) . Thus,

pc=0 (d je) = ∑l p (d je, c = 0, l) p (l je) (9)

This is just the formula for the conditional probability of D given E
under

pc=0 (d , l , c 0je) = p (d jl , c 0, e) If0g (c 0) p (l je)

From where it follows that the likelihood ratio between the observed
and the intervention laws (conditional on E ) satis�es

pc=0(d ,l ,c 0je)
p(d ,l ,c 0je) =

If0g(c
0)

Pr(C=0jE=e ,L=l) (10)
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Connections with the missing data literature

From
pc=0 (d je) = ∑

l

p (d je, c = 0, l) p (l je) (11)

we obtain

Ec=0 (D jE = e)| {z }
mean of D given E=e
if nobody dropped out

= E fE (D jE = e,C = 0, L) jE = eg| {z }
the regression functional

and from

pc=0 (d , l , c 0je)
p (d , l , c 0je) =

If0g (c
0)

Pr (c = 0jE = e, L = l) (12)

we obtain

Ec=0 (D jE = e)| {z }
mean of D given E=e
if nobody dropped out

= E
�

If0g (C )

Pr (C = 0jE = e, L)D
���� E = e�| {z }

the inverse probability weighted form
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A more realistic example with drop-outs

The preceding example is unrealistic because it assumed that the
post-randomization side e¤ects were not in�uenced by the patients�
underlying immune status

A more realistic DAG is
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A more realistic example with drop-outs

Even if (L1, L2) are measured we can�t use the back-door formula for
pe ,c=0 (d) because:

1 (L1, L2) does not meet the back-door criterion because L2 is a
descendant of E

2 L1 does not meet the criterion because the path C , L2,V , Y is
unblocked by L1

3 L2 does not meet the criterion because the path C , L1,V ,Y is
unblocked by L2
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A more realistic example with drop-outs

We will see later that pe ,c=0 (d) is identi�ed and it holds that

pe ,c=0 (d) = ∑
l=(l1,l2)

p (d je, c = 0, l) p (l je)

But
pe ,c=0 (d) 6= ∑

l=(l1,l2)

p (d je, c = 0, l) p (l)
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Section V: identi�ability of the intervention law, the
front-door adjustment and other results

The front-door adjustment theorem

Analysis of an example with two time dependent treatments

Why regression analysis is wrong with time dependent treatments and
covariates

Identi�cation theorem for time dependent treatment e¤ects

Back to our realistic drop-out example
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Corollaries of the "do" calculus: the front-door adjustment

De�nition: In a DAG G a set of nodes Z satis�es the front-door
criterion relative to an ordered paired of nodes (X ,Y ) i¤:

1 Z intercepts all directed paths between X and Y

2 there is no back door path from X to Z , and

3 all back door paths from Z to Y are blocked by X .

Theorem (Front door adjustment): if in a DAG G , Z is a set of
nodes that satis�es the front door criterion relative to the pair of
nodes (X ,Y ) and if p (x , z) > 0 for all x , z , then

px (y) = ∑z p (z jx)∑x 0 p (y jx 0, z) p (x 0)
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Proof of the front-door adjustment theorem

px (y) = ∑
z
px (y jz) px (z)

= ∑
z
px ,z (y) px (z) bc (Y q Z jX )GX ,Z (by cdn 3)

= ∑
z
pz (y) px (z) bc (Y q X jZ )GXZ (by cdn 1)

= ∑
z
pz (y) p (z jx) bc (Z q X )GX (by cdn 2)

= ∑
z

"
∑
x 0
p
�
y jx 0, z

�
p
�
x 0
�#
p (z jx) by cdn 3 and back-door adj.

Note: the second equality follows because condition 3 is
(Y q Z jX )GZ and this implies (Y q Z jX )GX ,Z because removing arcs
in a DAG can not create new d�connections.
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Intuition behind the front-door adjustment

The intuition (though not the proof) of the front-door adjustment is
as follows.

Because by condition 1 the only directed paths between X and Y are
paths that go through Z , then we can "decompose" the e¤ect px (y)
in two parts:

1 The e¤ect of X on Z , i.e. px (z)
2 The e¤ect of Z on Y , i.e. pz (y)

Both px (z) and pz (y) are identi�ed:

1 px (z) is identi�ed because by condition 2 there is no unblocked back
door path between X and Z

2 pz (y) is identi�ed because by condition 3, X (which is measured)
blocks all back door paths between Z and Y .
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Example of the front-door adjustment theorem

Recall the example of smoking and lung cancer

T (tar) satis�es the front-door criterion relative to (S ,C ) hence

ps (c) = ∑
z

"
∑
s 0
p
�
c js 0, t

�
p
�
s 0
�#
p (tjs)
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Critiques to the example of smoking and lung cancer

First critique: The causal model assumes that T is observed and
measured with precision.
What if we actually measure T � which is T plus some random error
independent of everything?

T � does not satisfy the front door condition because condition 1 fails,
T � does not intercept all directed paths between S and C
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Comments on the example of smoking and lung cancer

Second critique: the model assumes that the disturbances of T and
C don�t share common determinants.
But it is quite possible that there exist some biological factors V , e.g.
a gene, that regulate both the way in which the lung stores tar and
lung cancer

T does not satisfy the front door condition because condition 3 fails,
there are back-door paths between T and Y that are not blocked by
V
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Identi�cation with time dependent treatments and
covariates

The following example illustrates the essential points of the situation
that we consider next.

We will see that even though both the front-door and the back-door
criteria fail, px1x2 (y) is identi�ed
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Observational study in DAG

As part of a national campaign on health diet awareness:
At time t0 the government

1 distributes diet brochures at shopping malls
2 encourages HMOs, through �nancial incentives, to mail diet brochures

Six months later government distributes once again brochures at
shopping malls
One year later a survey asks

1 Dietary habits (Y )
2 Having received diet information at time t0 (X0)
3 Having received any additional diet information later (X1)
4 Having had an annuals doctor�s physical exam in the past year (L1)

Objective: to evaluate the impact of receiving di¤erent amounts of
diet information on diet, i.e. px0,x1 (y)
Unmeasured variables

1 Indicator of a¢ liation with an HMO (W0)
2 History of hypercholesterolemia in the family (W1)
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Arrows in the DAG of the example

1 Subjects in HMO�s are more likely than gral population to

1 receive diet brochure at time t0 (arrow from W0 to X0)
2 have an annual physical exam (arrow from W0 to L1)

2 Subjects with family history of hypercholesterolemia more like than
gral population to

1 have annual physical exam (arrow from W1 to L1)
2 care about their diet (arrow from W1 to Y )

3 HMO�s brochures encourage annual check-ups (arrow from X0 to L1)

4 Patients that did not receive a brochure at t0 are more likely than
those that received it to care for a brochure six months later (arrow
from X0 to X1)
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Front-door criterion not satis�ed

In our example, X = (X0,X1) . Will show that neither back-door nor
front-door criteria are satis�ed

The front door criterion fails because there is no variable that
intercepts all directed paths between X and Y .
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Back door criterion not satis�ed

Only two observed candidates for back-door criterion are ? and L1
∅ does not satisfy the criterion because (X /qY )GX 1 ,X 0

the path X1, L1,W1,Y is unblocked in GX 1,X 0
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Back door criterion not satis�ed

fL1g does not satisfy the back-door criterion because
(X /qY jL1)GX 1 ,X 0

the path X0,W0, L1,W1,Y is unblocked by L1 in GX 1,X 0
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Identi�cation of time dependent treatment e¤ects

Result: in the DAG of the example

px0,x1 (y) = ∑
l1

p (y jl1, x0, x1) p (l1jx0)

Corollary:

1 px0,x1 (y) depends only on the law of the measured variables
fX0, L1,X1,Y g .

2 can estimate px0,x1 (y) consistently
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Proof of result

px0,x1 (y) = px1 (y jx0) (rule 2)

= ∑
l1

px1 (y jl1, x0) px1 (l1jx0)

= ∑
l1

px1 (y jl1, x0) p (l1jx0) (rule 3)

= ∑
l1

p (y jl1, x0, x1) p (l1jx0) (rule 2)
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An interesting point

We have seen that

px0,x1 (y) = ∑
l1

p (y jl1, x0, x1) p (l1jx0) (13)

However, it can be proved that px0,x1 (l1) is not identi�ed. This is
essentially because with the measured variables we cannot block the
back-door path X0,W0, L1.

(13) is the marginal distribution of Y under the �ctitious law p�

p�
�
x 00, l1, x

0
1, y
�
= p (y jl1, x0, x1) Ifx1g

�
x 01
�
p (l1jx0) Ifx0g

�
x 00
�

This would be the intervention law if the causal DAG did not have the
unmeasured covariates W0 and W1
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An interesting point

We conclude that in this example

1 we remove W0 and W1 from the DAG and compute the intervention
law

2 we use this �ctitious intervention law to calculate the marginal
distribution of Y . This gives the actual law of the counterfactual Y

3 however, we cannot use this �ctitious intervention law to compute the
distribution of the counterfactual L
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Why standard regression analysis is wrong

I will now use our example to argue that regression analysis, whether
adjusting or not for covariates, gives wrong answers.

Suppose that neither X0 nor X1 have an e¤ect on anything because,
unknown to you, the dashed arrows are absent and consequently (by
rule 3)

px0,x1 (y) = p (y)
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Why standard regression analysis is wrong

Will a regression analysis tell you that (X0,X1) has no e¤ect on Y ?
Besides X0 and X1 you also have in the database the covariate L1
So, your options are either to compute

p (y jx0, x1) (regression of Y on X0 and X1) (14)

or
p (y jx0, x1, l1) (regression of Y on X0,X1 and L1) (15)
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Why standard regression analysis is wrong

I will now show in the DAG that

even when the dashed arrows are absent, generally,

p (y jx0, x1) depends on x1

and
p (y jx0, x1, l1) depends on x0

So any option of regression analysis will lead you to falsely conclude
that (X0,X1) has an e¤ect on Y .
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Why standard regression analysis is wrong

(X1 /qY )G even if the dashed arrows are absent from G because the
path Y ,W1, L1,X1 is unblocked.
So, in general,

p (y jx0, x1) depends on x1
Key reason for failure: by failing to condition on L1, we do not
block the back-door path X1, L1,W1,Y
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Why standard regression analysis is wrong

(X0 /qY jL1)G even if the dashed arrows are absent from G because
the path Y ,W1, L1,W0,X0 is unblocked by L1
So, in general,

p (y jx0, x1, l1) depends on x0
Key reason for failure: The pattern formed by the nodes
X0,W0, L1,W1 and Y is an M structure. By conditioning on L1 we
generate Berkson bias
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Why standard regression analysis is wrong

Conclusion: in a longitudinal study, with a time-dependent
covariate L1 that

1 is associated with previous exposure (X0)

2 is a cause of future exposure (X1), and

3 is associated with the outcome (Y )

the coe¢ cients of X0 and X1 in the either

1 the regression of Y on (X0,X1) , or

2 the regression of Y (X0,X1, L1)

do not have a causal interpretation.
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Why standard regression analysis is wrong

This example shows that even in the ideal world absent of sampling
variability or model misspeci�cation, (so that conditional probabilities
are known without sampling or model error)

a regression analysis which
1 either does not adjust for the measured covariate L1, or
2 adjusts for the measured covariate L1

can lead you to incorrectly conclude that (X0,X1) has an e¤ect on Y

The example also shows that even though regression analysis will give
the wrong answers, the quantity of interest px0,x1 (y) is indeed a
functional of the observed data law, i.e.

px0,x1 (y) = ∑l1 p (y jl1, x0, x1) p (l1jx0)

You should check that if in the true DAG the dashed arrows are
absent, then the expression on the RHS simpli�es to p (y)
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Revisit our drop-out example

We can now show the formula that identi�es pe ,c=0 (d) in our DAG
representing a realistic drop-out setting in a randomized trial

pe ,c=0 (d) = pc=0 (d je) (rule 2)

= ∑
l=(l1,l2)

pc=0 (d je, l) pc=0 (l1je)

= ∑
l=(l1,l2)

pc=0 (y je, l) p (l je) (rule 3)

= ∑
l=(l1,l2)

p (y jl , e, c = 0) p (l je) (rule 2)
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Identi�cation of time dependent treatment e¤ects

We will now give a Theorem (Pearl and Robins, 1995) that
generalizes the preceding result.
Theorem: let Y be a node in a causal DAG G that is disjoint with a
set of nodes X = fX0, ...,Xng . Let Nk be the set of nodes that are
non-descendants of fXk , ....,Xn,Y g in G . Suppose that Xj � Nj+1
for each j � 0, and that Xn is a non-descendant of Y . Let
X�1 = L�1 = ?. If there exists for each j � 0, a set of variables Lj
such that

1 Lj � Nj
2
�
Y q Xj jX0, ...,Xj�1, L0, ..., Lj

�
GX j ,X j+1 ,...,Xn

then,

px0,...,xn (y) = ∑
z1,...,zn

[p (y jl0, ..., ln, x1, ..., xn)

�
n
∏
j=1
p (lj jl0, ..., lj�1, x1, ..., xj�1)

#
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A super brief introduction to inference

Non-parametric inference when the back-door criterion holds

Methods for reducing dimension when the variables meeting the
back-door criterion are high dimensional

1 Outcome regression adjustment
2 Propensity score regression adjustment
3 Strati�cation by the propensity score
4 Matching by the propensity score
5 Weighting by the inverse of the propensity score (known as inverse
probability weighting, IPW)

6 Double-robust methods

What is left?
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Inference when the back door condition holds

Rosembaun and Rubin (JASA, 1984) proved that when Z satis�es
the back-door criterion for (X ,Y ) , then the propensity score

πx (Z ) � Pr (X = x jZ )

also satis�es the back-door criterion for (X ,Y )

Then, if Z that satis�es the back-door criterion for (X ,Y ) .we have
three forms of writing E (Yx ) ,

E (Yx ) = E fE [Y jX = x ,Z ]g

= E fE [Y jX = x ,πx (Z )]g

= E
h
Ifxg(X )
πx (Z )

Y
i
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Non-parametric inference when the back-door condition
holds

The RHS of the equalities in the previous slide are three ways of
writing the same functional of p (x , y , z) , and hence in particular,
they agree at the empirical law
Thus, we can estimate E (Yx ) withbE (Yx ) = En fEn [Y jX = x ,Z ]g

= En fEn [Y jX = x ,πn,x (Z )]g

= En
h
Ifxg(X )
πn,x (Z )

Y
i

where the subscript n indicates evaluation under the empirical law.

Big problem: when Z is high dimensional, the estimator is unfeasible
due to the curse of dimensionality
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Methods for estimating causal expectations when Z is high
dimensional

To estimate the functional

E (Yx ) = E fE [Y jX = x ,Z ]g

= E fE [Y jX = x ,πx (Z )]g

= E
h
Ifxg(X )
πx (Z )

Ifyg (Y )
i

when Z is high dimensional we must reduce dimension by modeling
one of the three choices

1 E [Y jX = x ,Z ]
2 πx (Z ) � Pr (X = x jZ ) , or
3 πx (Z ) � Pr (X = x jZ ) and E [Y jX = x ,πx (Z )]

The di¤erent existing methods di¤er according to which of these
choices they model.
To be concrete, I will explain them for Y and X binary.
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Methods for estimating causal expectations when Z is high
dimensional

1 Outcome regression adjustment

2 Propensity score regression adjustment

3 Strati�cation by the propensity score

4 Matching by the propensity score

5 Weighting by the inverse of the propensity score (known as inverse
probability weighting, IPW)

6 Double-robust methods
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Outcome regression adjustment

Outcome regression adjustment is based on the regression form

E (Yx ) = E fE [Y jX = x ,Z ]g

and it is essentially

bE (Yx ) = En nbE [Y jX = x ,Z ]o
ie. bE (Yx ) = n�1 n

∑
i=1

bE [Yi jXi = x ,Zi ]
where bE [Y jX = x ,Z ] is the �tted value from some parametric or
semiparametric regression model for E [Y jX = x ,Z ] .
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Algorithm for the outcome regression adjustment method

Let λi = P (Yi = 1jXi ,Zi )

1 We �t a logistic regression model of λi on Ai and Li , for example

log
�

λi
1� λi

�
= β0 + β1Xi + βT2 Zi

This is just an example! More complicated models with interactions
and powers of the components of Zi are allowed

2 We compute the �tted value

bλi = ebβ0+bβ1x+bβT2 Zi
1+ ebβ0+bβ1a+bβT2 Zi

3 The outcome regression estimator of P (Yx = 1) (the causal risk for
treatment x) is bex ,R = n�1 ∑n

i=1
bλi

(Institute) Congreso Monteiro, 2009 125 / 169



Cautions about the outcome regression adjustment

The logistic regression model is used to extrapolate the values of
Pr (Yi = 1jXi = x ,Zi ) for subjects i that were not treated with x )

1 If the logistic regression model is incorrect, then the method may yield
biased estimators.

2 But when Z is high dimensional it is quite possible that we may fail to
specify a reasonably correct model!

Because bex ,R is a valid (i.e. consistent) estimator of P (Yx = 1) ,
then a valid estimator of the causal odds ratio isbe1,R/ (1� be1,R )be0,R/ (1� be0,R )
A common mistake is to report as the regression adjusted estimator
of the causal odds ratio, the value bβ1.
However, bβ1 6= be1,R/ (1� be1,R )be0,R/ (1� be0,R )
due to the lack of collapsibility of odds ratios.

(Institute) Congreso Monteiro, 2009 126 / 169



Outcome regression adjustment with non-binary outcomes

If the outcomes are continuous we may �t a linear regression
model, such as

Yi = β0 + β1Xi + βT1 Zi + errori

Then, we estimate E (Ya) , the causal average in treatment a with

bex ,R = 1
n

n

∑
i=1

�bβ0 + bβ1x + bβT2 Zi�
If, as in our example, the regression model does not include
interactions with treatment, then the estimator of the so-called
average treatment e¤ect (ATE) E (Y1)� E (Y0) isbe1,R � be0,R
This is algebraically identical to bβ1. This is why it is often said that
the regression coe¢ cient β1 is the e¤ect of X on Y adjusted for
confounding
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Methods for computing causal risks when L is high
dimensional

1 Outcome regression adjustment

2 Propensity score regression adjustment

3 Strati�cation by the propensity score

4 Matching by the propensity score

5 Weighting by the inverse of the propensity score (known as inverse
probability weighting, IPW)

6 Double-robust methods
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Propensity score regression adjustment

Propensity score regression adjustment is based on the form

E (Yx ) = E fE [Y jX = x ,πx (Z )]g

and it is essentially

bE (Yx ) = En nbE [Y jX = x , bπx (Z )]o
ie. bE (Yx ) = n�1 n

∑
i=1

bE [Yi jXi = x , bπx (Zi )]
where bπx (Zi ) is a �tted value from a parametric or semiparametric
logistic regression model for Pr (X = x jZ ) and bE [Y jX = x , bπx (Z )]
is the �tted value from some parametric or semiparametric model for
E [Y jX = x , bπx (Z )] .
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Propensity score regression adjustment

The algorithm followed by the method of propensity score regression
is:

1 We �t a logistic regression model for the propensity score, for example

log
�

π1 (Zi )
1� π1 (Zi )

�
= α0 + αT1 Zi

and compute the �tted values bπi = ebα0+bαT1 Zi / �1+ ebα0+bαT1 Zi�
2 With λi now denoting Pr (Yi = 1jXi ,π1 (Zi )) , we �t another logistic
regression model,

log
�

λi
1� λi

�
= β0 + β1Xi + β2bπi

and compute bλi = ebβ0+bβ1x+bβT2 bπi / �1+ ebβ0+bβ1x+bβT2 bπi�
3 The estimator of P (Yx = 1) , the risk for treatment x is

bex ,PS ,REG = n�1 ∑n
i=1

bλi
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Caveat about the propensity score regression adjustment

A problem with the propensity score regression adjustment method is
that its validity relies on having two models correctly speci�ed,

1 one for the propensity score and

2 another for the probability of the outcome

If either model is wrong, then the method will yield biased estimators
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Methods for computing causal risks when L is high
dimensional

1 Outcome regression adjustment

2 Propensity score regression adjustment

3 Strati�cation by the propensity score

4 Matching by the propensity score

5 Weighting by the inverse of the propensity score (known as inverse
probability weighting, IPW)

6 Double-robust methods
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Strati�cation by the propensity score

A simpli�cation of the propensity score regression method, replaces
the second regression with strati�cation by percentiles of the
estimated propensity scores. The method works as follows

1 Repeat step 1 of the preceding algorithm so as to compute the
estimated prop. scores bπi

2 Form, say �ve, strata according to the quintiles bqj , j = 0, ..., 5, of bπi
from the entire sample (treated and untreated) with bq0 = 0 and bq5 = 1

3 Within each stratum, calculate the sample mean of Yi for those treated
with treatment x

4 Estimate the risk P (Yx = 1) with the average of the �ve sample
means obtained in step 3. That is,

bex ,PS ,SRAT = 1
5

5

∑
j=1

8>><>>:
1
nx ,j

∑
i treated with x
and in strata j

Yi

9>>=>>;
where nx ,j = number of subjects treated with x in the j th stratum.
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Iterative �tting of the propensity score model

To �t the propensity score model Rosenbaum and Rubin (JASA,
1984) recommended that, following the formation of the strata
(de�ned by, say, quintiles of the estimated prop. score) the analyst
examine the degree of balance for each covariate in L within each
stratum. Evidence of imbalance may re�ect that the propensity score
model is incorrect, and the need to iterate the model �tting with a
re�ned propensity score model.
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Caveats on the method of strati�cation by the propensity
score

Strati�cation by the propensity score is indeed a propensity score
regression method with a special (quite restrictive) model for the
outcome that assumes that

the mean of the outcome in each experimental group depends on the
propensity score only through its quintile stratum.

Most publications use strati�cation by quintiles owing to the
recommendation of Rosembaum and Rubin, Biometrika, 1983, and
JASA, 1984. It is often advocated that strati�cation by quintiles
removes nearly 90% of the bias in the crude risks.

However, in a simulation study reported in a recent article of
Lunceford and Davidian (Statistics in Medicine, 2004) the method of
strati�cation by quintiles of the prop. score showed substantially
smaller gains in bias reduction.
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Methods for computing causal risks when L is high
dimensional

1 Outcome regression adjustment

2 Propensity score regression adjustment

3 Strati�cation by the propensity score

4 Matching by the propensity score

5 Weighting by the inverse of the propensity score (known as inverse
probability weighting, IPW)

6 Double-robust methods
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Propensity score matching

Propensity score matching essentially relies of some form of
non-parametric estimation of E [Y jX = x , bπx (Z )] for some
preliminary estimator of bπx (Z )
The algorithm for propensity score matching is

1 Compute bπ1 (Z ) , the estimated propensity score for each subject,
usually he �t from some parametric, e.g. logistic regression, model.

2 Using some matching algorithm, e.g. nearest neighbor, kernel, etc

1 Match each treated subject with, say k , untreated subjects (controls)

2 Match each untreated subject with , say k , treated subjects.
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Propensity score matching

The matched propensity score estimates of E (Yx=1) and E (Yx=0)
are

be1,PS ,M =
1
n

8><>: ∑
i :subject i
was treated

Yi + ∑
j :subject j

was not treated

Y T ,j

9>=>; and

be0,PS ,M =
1
n

8><>: ∑
j :subject j

was not treated

Yj + ∑
i :subject i

Y c ,i

was treated

9>=>;
where

1 Y c ,i is the average of the outcomes for the matched controls for the
i th treated subject.

2 Y T ,j is the average of the outcomes for the matched treated subjects
for the j th control
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Methods for computing causal risks when L is high
dimensional

1 Outcome regression adjustment

2 Propensity score regression adjustment

3 Strati�cation by the propensity score

4 Matching by the propensity score

5 Weighting by the inverse of the propensity score (known as
inverse probability weighting, IPW)

6 Double-robust methods

(Institute) Congreso Monteiro, 2009 139 / 169



Inverse probability weighting

IPW is based on the form

E (Yx ) = E
�
Ifxg (X )

πx (Z )
Y
�

It is computed as

bex ,IPW =
∑all subjects i
with Xi=x

1bπx ,i Yi
∑all subjects i
with Xi=x

1bπx ,i
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Caveats about the IPW method

The method relies on the propensity score model being right
it can give substantially biased results if the model is wrong because if
so, each treated subject may misrepresent the right proportion of
subjects in the population with the same prognostic factors.

Even if the propensity score model is right, the estimator may have an
undesirable behavior when the true propensity scores are close to 0
(for estimating risk if treated) and close to 1 (for estimating risk if
untreated).

In most samples there will be nobody with Z 0s corresponding to small
propensity scores among the treated, so the estimator will be
systematically over (or under)-estimating quite far from the truth if the
estimated propensity scores are very close to 0 (or close to 1 if we are
estimating the risk if untreated) because in such case some subjects
may receive unduly large weights.

It is because of the problem of unduly large weights that the method
is not recommended when some estimated propensity scores are close
to 0 or to 1.
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Methods for computing causal risks when L is high
dimensional

1 Outcome regression adjustment

2 Propensity score regression adjustment

3 Strati�cation by the propensity score

4 Matching by the propensity score

5 Weighting by the inverse of the propensity score (known as inverse
probability weighting, IPW)

6 Double-robust methods
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Double-robust methods

We have seen two methods that rely on just one model being right:
1 Outcome regression adjustment: relies on regression model for the
outcome Y given A and L

2 IPW estimation: relies on logistic regression model for the
relationship between the propensity score and L

Each method fails if the assumed models are misspeci�ed.
Double-robust (DR) methods are techniques that require that one
specify both

1 an outcome regression model
2 a model for the propensity score

But DR methods give valid inference if one of the models is right,
but not necessarily both!!!!
Contrast this with the method of propensity score regression
adjustment. That method needed the speci�cation of the same two
models, but it required that both models be correct in order to
give valid inferences
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Double-robust methods

Recall the outcome regression adjusted estimator

1 We �t a logistic regression model for λi = Pr (Yi = 1jXi ,Zi ) , for
example

log
�

λi
1� λi

�
= β0 + β1Xi + βT2 Zi

2 We compute the �tted value

bλi = ebβ0+bβ1x+bβT2 Zi
1+ ebβ0+bβ1x+bβT2 Zi

3 The outcome regression estimator of P (Yx = 1) (the risk for
treatment x) is bex ,R = n�1 ∑n

i=1
bλi
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Double-robust methods

The double-robust estimator of P (Ya = 1) is computed by adding to
the outcome regression estimator and augmentation term

bex ,DR| {z }
DR estimator

= bex ,R|{z}
Outcome Reg Estimator

+ bdx|{z}
Augmentation term

Augmentation term de�nition

bdx = ∑all subjects i
with Xi=x

1bπx ,i
�
Yi � bλi�

∑all subjects i
with Xi=x

1bπx ,i
It can be shown that bex ,DR is consistent for E (Yx ) provided either
the outcome regression model or the propensity score model is correct
but not necessarily both
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A brief tour for what we left...

Inference for the causal e¤ects of time dependent treatments in the
presence of time dependent covariates

Instrumental variables methods

Principal stratum estimands

Direct vs indirect e¤ects

Sensitivity analysis and best-worse case bounds for non-identi�ed
estimands

Calculation of the probability of counterfactual statements.
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Una invitacion...

Si le ha interesado el curso, queda invitado al taller de causalidad que
se realiza cada lunes de 19:15 a 21:30 hs en la Universidad Di Tella

El taller es interdisciplinario y asisten al mismo economistas,
epidemiologos y matematicos

El taller es gratuito y abierto al publico en general

Para mas informacion puede escribirme a arotnitzky@utdt.edu
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APPENDIX: PROOF OF THE INDENTIFICATION THEOREM
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Proof of the identi�cation theorem

Proof: We will show the absolute continuity by showing by induction
that if px 0 (v) > 0 then p (vl jv l�1) > 0, l = 1, ..., k. Suppose then
that px 0 (v) > 0, then

1 p (v1) > 0 because

1 if v1 2 x 0 then p (v1) > 0 by (6) since PAV1 is empty. and
2 if v1 /2 x 0 then p (v1) = Pr (f1 (U1) = v1) = px 0 (v1) and consequently
is true by the assumption px 0 (v1 j) > 0

2 Suppose that p (vl jv l�1) > 0 is true for 1, ..., j � 1, then it is true for
l = j because

1 If vj 2 x 0, then p
�
vj jv j�1

�
= p (x 0s jpas ) for some s , and then

p
�
vj jv j�1

�
> 0 holds by (6)

2 If vj /2 x 0, then by inductive assumption p
�
v j�1

�
> 0 and in such case,

p
�
vj jv j�1

�
is well de�ned and it holds that

p
�
vj jv j�1

�
= Pr

�
f
�
paj ,Uj

�
= vj

�
= px 0

�
vj jv j�1

�
> 0
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Proof of the identi�cation theorem, continued

Next,

px 0 (v)

=
n

Πk
j=1px 0 (vj jpaj )

o
Ifpx 0 (�)>0g (v) (16)

=
n

Πvj /2x 0px 0 (vj jpaj )
o
Ifx 0g (x) Ifpx 0 (�)>0g (v) (17)

=
n

Πvj /2x 0 Pr (fj (paj ,Uj ) = vj )
o
Ifx 0g (x) Ifpx 0 (�)>0g (v) (18)

=
n

Πvj /2x 0 Pr (fj (paj ,Uj ) = vj )
o
Ifx 0g (x) Ifp(�)>0g (v) (19)

=
n

Πvj /2x 0 Pr (fj (paj ,Uj ) = vj jPAj = paj )
o
Ifx 0g (x) Ifp(�)>0g (v)(20)

=
n

Πvj /2x 0p (vj jpaj )
o
Ifx 0g (x) Ifp(�)>0g (v) (21)
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Proof of the identi�cation theorem, continued

1 (16) is true by the causal Markov condition
2 (17) is true because px 0 (xs jpas ) = Ifx 0s g (xs )
3 (18) is true because Uj q V j�1 (x 0)
4 (19) is true because Ifx 0g (x) Ifpx 0 (�)>0g (v) = Ifx 0g (x) Ifp(�)>0g (v)
since

1 the left hand side equal 1 implies the right hand side equal 1 by
absolute continuity of px 0 (�) with respect to p (�)

2 the right hand side equal 1 implies x = x 0 and p
�
vj jpaj

�
> 0. But if

x = x 0, then p
�
vj jpaj

�
= px 0

�
vj jpaj

�
which shows that the left hand

side is 1

5 (20) is true because Uj q V j�1 and because Pr
�
PAj = paj

�
> 0 and

hence conditioning on PAj = paj is valid
6 (21) is true by de�nition of p

�
vj jpaj

�
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References

The following list of references is not comprehensive. There is a ton
written about causal inference in longitudinal studies with time
dependent treatments. I just give a brief list of papers at the end here,
but you should go to Jamie Robins�web site for a comprehensive list.

To read about causal diagrams I recommend that you read Judea
Pearl�s book (it is listed in the next slide.

Also, go to his webpage at UCLA (type his name in google to �nd his
page. He has tons of papers for downloading there.
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Books

Morgan, S. Winship, C.(2007). Counterfactuals and Causal Inference.
Cambridge University Press. (a good introductory book)

Manski, Ch. (1994). Identi�cation problems in social sciences
Harvard University Press. (causal modeling in econometrics and social
sciences)

Rubin, D. (2006) Matched Sampling for Causal E¤ects. Cambridge
University Press (a collection of reprints of articles by the author)

Pearl, J. (2000). Causality: Models, Reasoning and Inference.
Cambridge University Press (a book about causal graphs)

Rosenbaum, RP. (2002). Observational Studies, 2nd edn. New York:
Springer-Verlag.
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Books

van der Laan MJ, Robins JM. (2003). Uni�ed Methods for Censored
Longitudinal Data and Causality. Springer Verlag: New York
(Advanced and very hard to read. It treats the theory for
semiparametric models for causal inference)

Tsiatis, A. (2006). Semiparametric Theory and Missing Data.
Springer. (Treats the same theory as van der Laan and Robins, but at
an introductory level. Only one chapter on causality, and only about
point exposure studies).
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The counterfactual model

Rubin, DB. (1983). Estimating causal e¤ects in randomized and
non-randomized studies. Journal of educational psychology. 66,
688-701.2.
Rubin, D., (1977), �Assignment to Treatment Group on the Basis of
a Covariate,� Journal of Educational Statistics, 2(1): 1-26.
Rubin, D., (1978), �Bayesian inference for causal e¤ects: The Role of
Randomization�, Annals of Statistics, 6: 34-58.
Holland, P. (1986). Statistics and causal inference. Journal of the
American Statistical Association. 81, 945-960.
Hernan, M. (2004). A de�nition of causal e¤ect for epidemiological
research. J Epidemiol Community Health; 58:265�271.
Crump, R., Hotz, V., Imbens, G. and Mitnik, O. (2006) Moving the
Goalposts: Addressing Limited Overlap in Estimation of Average
Treatment E¤ects by Changing the Estimand. Paper downloadable
from ideas.repec.org/p/iza/izadps/dp2347.html (this paper has an
extensive reference list)
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Philosophycal issues around the de�nition of
counterfactuals

Robins JM, Greenland S. (2000). Comment on �causal inference
without counterfactuals.� J Am Stat Assoc 95:477�82.

Greenland S. (2002) Causality theory for policy uses of epidemiologic
measures. In: Murray CJ, Salomon JA, Mathers, CD, et al, eds.
Summary measures of population health. Cambridge, MA: Harvard
University Press/World Health Organization,

Hernan, M. (2005). Invited Commentary: Hypothetical Interventions
to De�ne Causal E¤ects� Afterthought or Prerequisite? American
Journal of Epidemiology. 162. 618�620
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Theory of propensity scores methods

Rosenbaum, PR. and Rubin, DB. (1983). The Central role of the
propensity score in observational studies for causal e¤ects. Biometrika
70, 41-55.
Rosenbaum, PR. and Rubin, DB. (1984). Reducing bias in
observational studies using subclassi�cation on the propensity score.
Journal of the American Statistical Association. 79, 516-524.
Rosenbaum, PR and Rubin, D. (1985) The bias due to incomplete
matching Biometrics 41:103-16
Rosenbaum, PR and Rubin, D. (1985) Constructing a control group
using multivariate matched sampling methods. American Statistician
39:33-8
Rosenbaum, PR (1987) Model based direct adjustment. Journal of
the American Statistical Association. 82, 387-94
Rosenbaum, PR. (1998). Propensity score. In Encyclopedia of
Biostatistics, Volume 5, Armitage P, Colton T (eds). Wiley: New
York, 3551-3555.
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Double-robust methodology

Robins, J. and Rotnitzky, A. (2001). Comment on "Inference for
semiparametric models: some questions and an answer�, by Bickel and
Kwon. Statistica Sinica 11:920-36. (this has the most up to date
results on the theory of double robustness)

Bang H, Robins J. (2005). Doubly robust estimation in Missing data
and causal Inference Models. Biometrics, 61:692-972. (the best
expository paper about double robustness at an expository level)

Rotnitzky A, Faraggi D and Schisterman. Doubly robust estimation of
the area under the receiver-operating characteristic curve in the
presence of veri�cation bias. Journal of the American Statistical
Association, 2006; 101(475): 1276-1288. D (an application of
double-robust methods to a problem not involving causality)

(Institute) Congreso Monteiro, 2009 158 / 169



Double-robust methodology

Tan, Z. (2006) A distributional approach for causal inference using
propensity scores. Journal of the American Statistical Association.
101(476):1619-37. (connects double-robustness with non-parametric
likelihood estimation)

Kang, J. and Schafer, J. (2007) Demystifying Double Robustness: A
Comparison of Alternative Strategies for Estimating a Population
Mean from Incomplete Data. (with discussion) Statistical Science.
523-539 (compares with other methods and criticizes
double-robustness).
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Surveys of causal inference methodology for point exposure
studies

Hernan, M. and Robins, J. (2006). Estimating causal e¤ects from
epidemiologic data. J. Epidemiol. Community Health 60;578-586.
(discusses standardization and IPW methods)
Lunceford, JK. and Davidian, M. (2004). Strati�cation and weighting
via the propensity score in estimation of causal treatment e¤ects: A
comparative study. Statistics in Medicine 23, 2937-2960. (compares
prop. score strati�cation, regression and double-robust methods)
D�Agostino RB. Propensity score methods for bias reduction in the
comparison of treatment to a non-randomized control group. (1998)
Statistics in Medicine; 17:2265 �2281. (discusses all methods but
without derivations)
Austin PC, Mamdani MM, Stukel TA, Anderson GM, Tu JV. (2005)
The use of the propensity score for estimating treatment e¤ects:
administrative versus clinical data. Statistics in Medicine
24:1563�1578.
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Surveys of causal inference methodology for point exposure
studies

Austin PC. (2008) A critical appraisal of propensity score matching in
the medical literature 1996-2003 (provides an extensive list of papers
in the medical literature where propensity score methodology was
applied). Statistics in Medicine, 27. 2037-49.

Austin PC, Mamdani MM. (2006). A comparison of propensity score
methods: a case-study estimating the e¤ectiveness of post-AMI statin
use. Statistics in Medicine 2006; 25:2084�2106. (this paper has the
Statin study discussed in these notes. Be aware that it inadequately
implements strati�cation and matching by the propensity score
because of problems of collapsibility explained in these notes)
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Instrumental variables Just a few...

Greenland, S. (2000) An introduction to instrumental variables for
epidemiologists. International Journal of Epidemiology. 29, 722-729.

Angrist, J. Imbens, G. and Rubin, D. (1996). Identi�cation of causal
e¤ects using instrumental variables (with discussion). J. of the
American Statistical Association. 91. 444-472.

Angrist, J. and Pischke, J. S. (2008) Mostly Harmless Econometrics:
An Empiricist�s Companion, Ch 4.

Hernan, M. and Robins, J. (2006) Instruments for Causal Inference,
an epidemiologist dream? Epidemiology � Volume 17, Number 4, pp
360-372
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Theory of causal inference with time dependent treatments
Why standard regression models don�t work.
(http://www.biostat.harvard.edu/~robins/research.html).

Robins JM. (1997). Causal Inference from Complex Longitudinal
Data. Latent Variable Modeling and Applications to Causality.
Lecture Notes in Statistics (120), M. Berkane, Editor. NY: Springer
Verlag, pp. 69-117. (Good exposition of why standard regression
models don�t help with causal inference. Deals with G-computation
algorithm and nested models but no marginal models.I recommend
that you start with this article)
Robins JM. (1986). A new approach to causal inference in mortality
studies with sustained exposure periods - Application to control of the
healthy worker survivor e¤ect. Mathematical Modelling, 7:1393-1512.
Robins JM. (1987). A graphical approach to the identi�cation and
estimation of causal parameters in mortality studies with sustained
exposure periods. Journal of Chronic Disease (40, Supplement),
2:139s-161s.
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Theory of causal inference with time dependent
treatments. Marginal Structural Models.
(http://www.biostat.harvard.edu/~robins/research.html).

Robins, J. (1998a). Marginal structural models. In 1997 Proceedings
of the American Statistical Association. American Statistical
Association, Alexandria, VA, 1�10.

Robins, J. (1999a). Association, causation, and marginal structural
models. Synthese 121, 151�179. MR1766776

Robins, J. (1999b). Marginal structural models versus structural
nested models as tools for causal inference. Statistical Models in
Epidemiology: The Environment and Clinical Trials. Springer-Verlag,
95�134. MR1731682.
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Theory of causal inference with time dependent
treatments. Marginal Structural Models.
(http://www.biostat.harvard.edu/~robins/research.html).

Robins, J. (2000). Robust estimation in sequentially ignorable missing
data and causal inference models. In Proceedings of the American
Statistical Association Section on Bayesian Statistical Science 1999.
American Statistical Association, Alexandria, VA, 6�10.

Robins JM, Hernán M, Brumback B. (2000). Marginal structural
models and causal inference in epidemiology. Epidemiology,
11(5):550-560.
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Theory of causal inference with time dependent
treatments. Structural Nested Models.
(http://www.biostat.harvard.edu/~robins/research.html).

Robins, J. (1998b). Structural nested failure time models. The
Encyclopedia of Biostatistics. John Wiley and Sons, Chichester, U.K.,
Chapter Survival Analysis, P.K. Andersen and N. Keidig (Section
editors), 4372�4389.

Robins JM, Blevins D, Ritter G, Wulfsohn M. (1992). G-estimation of
the e¤ect of prophylaxis therapy for pneumocystis carinii pneumonia
on the survival of AIDS patients. Epidemiology, 3:319-33

Robins JM. (1994). Correcting for non-compliance in randomized
trials using structural nested mean models. Communications in
Statistics, 23:2379-2412.
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Theory of causal inference with time dependent
treatments. Structural Nested Models.
(http://www.biostat.harvard.edu/~robins/research.html).

Robins JM. (1997). Structural nested failure time models. In:
Survival Analysis, P.K. Andersen and N. Keiding, Section Editors.
The Encyclopedia of Biostatistics, P. Armitage and T. Colton,
Editors. Chichester, UK: John Wiley & Sons, pp. 4372-4389.

Robins JM, Rotnitzky A. (2004). Estimation of treatment e¤ects in
randomised trials with non-compliance and a dichotomous outcome
using structural mean models. Biometrika 91: 763-783.
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Data analysis using marginal structural models.
(http://www.biostat.harvard.edu/~robins/research.html).

Hernán M, Brumback B, Robins JM. (2000). Marginal structural
models to estimate the causal e¤ect of zidovudine on the survival of
HIV-positive men. Epidemiology, 11(5):561-570.

Hernán M, Brumback B, Robins JM. (2001). Marginal structural
models to estimate the joint causal e¤ect of nonrandomized
treatments. Journal of the American Statistical Association �
Applications and Case Studies, 96(454):440-448.

Hernán MA, Brumback B, Robins JM. (2002). Estimating the causal
e¤ect of zidovudine on CD4 count with a marginal structural model
for repeated measures. Statistics in Medicine, 21:1689-1709.
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Data analysis using structural nested models.
(http://www.biostat.harvard.edu/~robins/research.html).

Mark SD, Robins JM. (1993). Estimating the causal e¤ect of
smoking cessation in the presence of confounding factors using a rank
preserving structural failure time model. Statistics in Medicine,
12:1605-1628.

Witteman JC, d�Agostino RB, Stijnen T, Kannel WB, Cobb JC,
deRidder MAJ, Ho¤man A, Robins JM. (1998). G-estimation of
causal e¤ects: isolated systolic hypertension and cardiovascular death
in the Framingham Study. American Journal of Epidemiology,
148:390-401.

Hernán MA, Cole S, Margolick J, Cohen M, Robins J (2005).
Structural accelerated failure time models for survival analysis in
studies with time-varying treatments. Pharmacoepidemiology and
Drug Safety. (Published online 19 Jan 2005)
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