A REMARK ON AN APPROXIMATE FUNCTIONAL EQUATION FOR $\zeta(s)$

PABLO PANZONE

ABSTRACT. We derive an approximate functional equation for Riemann zeta function in the critical strip with sharp error term using a combinatorial identity.

1. INTRODUCTION

Perhaps the simplest of all approximate formulas for $\zeta(s)$, the Riemann zeta function, is

$$\zeta(s) = \sum_{n \leqslant x} \frac{1}{n^s} - \frac{x^{1-s}}{1-s} + O(x^{-\sigma}) ,$$

which holds uniformly for $0 < \sigma_0 \le \sigma$, $|t| < \frac{2\pi x}{C}$, where *C* is a given constant greater than 1 (here, as usual, $s = \sigma + it$). See [3], pg. 77.

In the present note we present an approximate functional equation for $\zeta(s)$ in the critical strip (Theorem 2) which differs from the classical one and depends on a certain combinatorial identity (Lemma 2). Our approximate functional equation has a sharp error term but the main term is combinatorially complicated. We give some evidence that this main term behaves like a jump function.

No use of this functional equation is made in this note.

2. The approximate functional equation

Our main results are Theorems 1 and 2. Theorem 2 gives an approximate functional equation with sharp error term.

Theorem 1. If $s = \sigma + it$ with $0 < \sigma < 1$ then

$$\zeta(s) = \frac{\sin(\pi s)}{(1-2^{1-s})\pi} \int_0^\infty x^{-s} \left(\sum_{n=1}^\infty \frac{(2n-2)!}{4^{n-1}(2n+x)\dots(1+x)} \left\{ \frac{3}{2}n + \frac{1}{2}x - \frac{1}{4} \right\} \right) dx.$$
(1)

For any real number x, let [x] denote the integer part of x.

Theorem 2. Assume $N = [c_1t]$ with $\frac{\pi}{2\log 4} < c_1$. Then the following formula holds uniformly if $0 < \sigma \leq \sigma_0 < 1$, t > 0:

$$(1-2^{1-s})\zeta(s) = \frac{1}{2}\sum_{j=0}^{2N-1} \frac{(-1)^j}{(1+j)^s} a_{j,N} + O(t^{-\sigma}e^{-(c_1\log 4 - \frac{\pi}{2})t}),$$

where $a_{j,N} = \sum_{n=\lfloor \frac{j}{2} \rfloor+1}^{N} \frac{1}{(2n-1)4^{n-1}} \binom{2n-1}{j} (3n-j-\frac{3}{2}).$

²⁰⁰⁰ Mathematics Subject Classification. 11Mxx.

Key words and phrases. Riemann zeta function formulae, approximate formulae. Supported in part by UNS and CONICET.

3. Proofs

We need to recall

Lemma 3. Let Q(x) be a meromorphic function of x having no poles on the positive real axis and such that $x^aQ(x) \to 0$ both when $x \to 0$ and $x \to \infty$. Also $\int_{C_{\rho_i}} (-z)^{a-1}Q(z)dz \to 0$ if $i \to \infty$ where C_{ρ_i} is a sequence of circles (squares) centered at the origin with increasing radii (diameters) tending to infinity. Then

$$\int_0^\infty x^{a-1} Q(x) dx = \frac{\pi}{\sin(\pi a)} \sum r \,, \tag{2}$$

where $\sum r$ denotes the sum of the residues of $(-z)^{a-1}Q(z)$, and the residues in $\sum r$ are added according to their distance to the origin. Here $(-z)^{a-1} = e^{(a-1)\log(-z)}$, where $-\pi \leq Arg(-z) < \pi$.

This lemma is well-known and we refer the reader to [4] pg. 117.

Proof of Theorem 1. We have

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(n+x)} = \sum_{n=1}^{\infty} \frac{(2n-2)!}{4^{n-1}(2n+x)\dots(1+x)} \left\{ \frac{3}{2}n + \frac{1}{2}x - \frac{1}{4} \right\},\tag{3}$$

This formula is proved in Lemma 2 below.

Let *a* be a real number such that $0 < a < \frac{1}{2}$ and let $Q(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(n+x)}$. It is not difficult to show that $\int_{C_{\rho_i}} (-z)^{a-1} Q(z) dz \to 0$ if $i \to \infty$, where C_{ρ_i} is the square centered at zero of side 2i + 1. Also $x^a Q(x) \to 0$ if $x \to 0$. Applying Lemma 1 we obtain

$$\int_0^\infty x^{a-1} \left(\sum_{n=1}^\infty \frac{(-1)^{n-1}}{(n+x)} \right) dx = \frac{\pi}{\sin(\pi a)} \sum_{n=1}^\infty (-1)^{n-1} n^{a-1}.$$
 (4)

Setting $1 - a = s = \sigma + it$, using analytic continuation, formula (3) and $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^s} = (1 - 2^{1-s})\zeta(s)$ ($\sigma > 0$), we arrive to formula (1).

Lemma 4. The following identity holds

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(n+x)} = \sum_{n=1}^{\infty} \frac{(2n-2)!}{4^{n-1}(2n+x)\dots(1+x)} \left\{ \frac{3}{2}n + \frac{1}{2}x - \frac{1}{4} \right\}.$$

Proof. First we have

$$\sum_{k=1}^{K} \frac{b_1 \dots b_{k-1}}{x(x+a_1) \dots (x+a_k)} (x+a_k-b_k) = \frac{1}{x} - \frac{b_1 \dots b_K}{x(x+a_1) \dots (x+a_K)},$$

which follows from writing the right hand side as $A_0 - A_K$ and noticing that each term on the left is $A_{k-1} - A_k$. Replace x by $(n+x)^2$, a_k by $-k^2$, b_k by $k(\frac{1}{2}-k)$ and K = n-1. Multiply everything by $(n+x)(-1)^{n-1}$ and add from n = 1 to N. Then $b_1 \dots b_{k-1} = (-1)^{k-1} \frac{(2k-2)!}{4^{k-1}}$ and

$$\sum_{n=1}^{N} \frac{(-1)^{n-1}}{(n+x)} - \sum_{n=1}^{N} \frac{(-1)^{n-1} b_1 \dots b_{n-1}}{(2n-1+x) \dots (1+x)} = \sum_{n=1}^{N} \sum_{k=1}^{n-1} \frac{(-1)^{n-1}}{(n+k+x) \dots (n-k+x)} b_1 \dots b_{k-1} \left((n+x)^2 - \frac{k}{2} \right).$$
(5)

Actas del IX Congreso Dr. Antonio A. R. Monteiro, 2007

We define

$$\varepsilon_{n,k}(x) := (-1)^{n+k} \frac{(2k-2)! (\frac{n+x}{2} + \frac{1}{4})}{4^{k-1}(n+k+x) \dots (n-k+1+x)}$$

Then the last formula of (5) is equal to

$$\sum_{n=1}^{N}\sum_{k=1}^{n-1}(\varepsilon_{n,k}(x)-\varepsilon_{n-1,k}(x))=\sum_{k=1}^{N}\varepsilon_{N,k}(x)-\sum_{k=1}^{N}\varepsilon_{k,k}(x).$$

Now notice that $\sum_{k=1}^{N} \varepsilon_{N,k}(x) \to 0$ if $N \to \infty$ and 0 < x < 1. Thus by analytic continuation

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(n+x)} = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} b_1 \dots b_{n-1}}{(2n-1+x) \dots (1+x)} - \sum_{k=1}^{\infty} \varepsilon_{k,k}(x),$$

which is (3).

(i)

To prove Theorem 2 we need the following lemma.

Lemma 5. *If* $1 \le n, -1 < \sigma < 1$, t > 0 *then*

$$\int_0^\infty \frac{x^{-s}}{(2n+x)(2n-1+x)\dots(1+x)} dx = \frac{\pi}{(2n-1)!\sin(\pi s)} \sum_{j=0}^{2n-1} \binom{2n-1}{j} (-1)^j (j+1)^{-s}.$$

(ii) For the same values of *n* and *t* and with $-1 < \sigma \le \sigma_0 < 1$ there exists a constant $c_0 = c_0(\sigma_0)$ (depending only on σ_0) such that the absolute value of the integral in (*i*) is bounded by

$$\frac{c_0}{|\sin(\pi s)|} \frac{n^{1-\sigma} e^{t\pi/2}}{(2n)!}$$

Proof. Apply Lemma 1 to the left-hand side of (i) to obtain

$$\frac{\pi}{\sin(\pi s)}\left(\frac{1^{-s}}{(2n-1)!0!}-\frac{2^{-s}}{(2n-2)!1!}+\cdots-\frac{(2n)^{-s}}{(2n-1)!}\right),\,$$

which is the right-hand side of (i). (ii) is proved as follows. By Lemma 1 we have to evaluate $\int_{\gamma} := \int_{\gamma} \frac{(-z)^{-s}}{(2n+z)(2n-1+z)\dots(1+z)} dz$ where γ is a positively oriented curve enclosing $-1, -2, \dots, -2n$.

Take γ to be the rectangle with vertices $-\varepsilon + i2n$, -2n - 1 + i2n, -2n - 1 - i2n, $-\varepsilon - i2n$, $(0 < \varepsilon < 1)$. We parametrize $\gamma = \gamma(\tau), \tau \in [0, cn]$ and $|\gamma'(\tau)| = 1$ with *c* depending on ε but bounded for any ε . Therefore we have

$$|\int_{\gamma}| \leqslant \int_{0}^{cn} |\frac{(-\gamma(\tau))^{-s}}{(2n+\gamma(\tau))\dots(1+\gamma(\tau))}| . |\gamma'(\tau)| d\tau \leqslant$$

$$\max_{z\in\gamma}\left|\frac{1}{(2n+z)\dots(1+z)}\right|\int_0^{cn}\left|(-\gamma(\tau))^{-s}\right|d\tau,$$

and

$$\int_0^{cn} |(-\gamma(\tau))^{-s}| d\tau \leqslant \int_0^{cn} |\gamma(\tau)|^{-\sigma} e^{tArg(-\gamma(\tau))} d\tau \leqslant e^{\frac{t\pi}{2}} \int_0^{cn} |\gamma(\tau)|^{-\sigma} d\tau.$$

Now we claim that $\max_{z \in \gamma} \left| \frac{1}{(2n+z)\dots(1+z)} \right| \leq \frac{1}{(2n)!} + \delta(\varepsilon)$ with $\delta(\varepsilon) \to 0$ if $\varepsilon \to 0$. This would prove (ii). To prove the above inequality we observe that by symmetry it is enough to compute a bound on the segments $[-\varepsilon, -\varepsilon + i2n], [-2n - 1 + i2n, -\varepsilon + i2n]$. For the

Actas del IX Congreso Dr. Antonio A. R. Monteiro, 2007

first segment, it is easily seen that for any point z on it we have that |j+z| = dist(z, -j) increases if z moves upwards on the segment. Thus the maximum is obtained on $z = -\varepsilon$. On the second segment it can be seen that for any point z on it we have $2n \le |z+j|$. This shows that there the maximum is less than $\frac{1}{(2n)^{2n}}$. This proves the claimed inequality. Letting ε tend to zero we get (ii).

Proof of Theorem 2. Write, for short, $f(x,n) := \frac{1}{(2n+x)\dots(1+x)}(\frac{3n}{2} + \frac{x}{2} - \frac{1}{4})$. So (1) is written, interchanging summation and integration, as

$$\begin{aligned} \zeta(s) &= \frac{\sin(\pi s)}{(1-2^{1-s})\pi} \sum_{n=1}^{N} \int_{0}^{\infty} \frac{(2n-2)! x^{-s} f(x,n)}{4^{n-1}} dx \\ &+ \frac{\sin(\pi s)}{(1-2^{1-s})\pi} \sum_{n=N+1}^{\infty} \int_{0}^{\infty} \frac{(2n-2)! x^{-s} f(x,n)}{4^{n-1}} dx, \end{aligned}$$
(6)

Let $N = [c_1 t]$ with $\frac{\pi}{2\log 4} < c_1$. For $n \ge N + 1$ the last sum of (6) can be estimated using ii) of Lemma 3:

$$\begin{aligned} \frac{|\sin(\pi s)|}{|(1-2^{1-s})|\pi} \sum_{n=N+1}^{\infty} |\int_{0}^{\infty} \frac{(2n-2)!x^{-s}f(x,n)}{4^{n-1}} dx| &\leq \\ \frac{c_{0}}{|(1-2^{1-s})|\pi} \sum_{n=N+1}^{\infty} \frac{(2n-2)!}{4^{n-1}} (\frac{3n}{2} \frac{n^{1-\sigma}e^{\frac{t\pi}{2}}}{2n!} + \frac{1}{2} \frac{n^{1-(\sigma-1)}e^{\frac{t\pi}{2}}}{2n!} + \frac{1}{4} \frac{n^{1-\sigma}e^{\frac{t\pi}{2}}}{2n!}) \\ &\leq \frac{9c_{0}e^{t\pi/2}}{|1-2^{1-s}|8\pi} \sum_{n=N+1}^{\infty} \frac{n^{1-\sigma}}{(2n-1)4^{n-1}} \leq O(\frac{e^{t\pi/2}N^{-\sigma}}{4^{N}}) = O(t^{-\sigma}e^{-(c_{1}\log4-\frac{\pi}{2})t}) \end{aligned}$$

For the first sum in (6) we use (i) of Lemma 3.

Remark 1. From Theorem 1 one has the following curious formula:

Corollary 1. If $f(s) = \frac{1}{\Gamma(s)} \int_0^\infty \operatorname{ArcTanh}(\frac{1-e^{-x}}{2}) e^{-x} x^{s-1} dx$ then

$$-\zeta(s)\frac{(1-2^{1-s})}{2} = f(s) - f(s-1) - \frac{1}{2}\left(\frac{1}{1^s} + \frac{1}{3\cdot 2^s} + \frac{1}{3^2\cdot 3^s} + \frac{1}{3^3\cdot 4^s} + \frac{1}{3^4\cdot 5^s} \dots\right)$$

Hint. Recall that $\int_0^\infty e^{-jx} x^{s-1} dx = \Gamma(s) j^{-s}$ for suitable *s* and *j*. Thus Lemma 3 (i) is equal to

$$\frac{\pi}{(2n-1)!\sin(\pi s)\Gamma(s)}\int_0^\infty (1-e^{-x})^{2n-1}e^{-x}x^{s-1}dx.$$

Using this in formula (1), interchanging summation and integration and using that

$$\sum_{n=1}^{\infty} \frac{\frac{3n}{2} - \frac{1}{4}}{4^{n-1}(2n-1)} \alpha^{2n-1} = \operatorname{ArcTanh}(\frac{\alpha}{2}) - \frac{3\alpha}{\alpha^2 - 4},$$

and

$$\sum_{n=1}^{\infty} \frac{\alpha^{2n-1}}{4^{n-1}(2n-1)} = 2\operatorname{ArcTanh}(\frac{\alpha}{2}),$$

we get

$$\zeta(s) = \frac{f(s) - f(s-1)}{(1-2^{1-s})} - \frac{3}{(1-2^{1-s})\Gamma(s)} \int_0^\infty \frac{(1-e^{-x})e^{-x}x^{s-1}}{(1-e^{-x})^2 - 4} dx.$$

This formula proves the corollary after some simplifications.

Actas del IX Congreso Dr. Antonio A. R. Monteiro, 2007

4. ON THE COEFFICIENT $a_{j,N}$

Recall the definition of $a_{j,N}$, the coefficient of $\frac{(-1)^j}{(1+j)^s}$ in Theorem 2:

$$a_{j,N} = \sum_{n=\lfloor j/2 \rfloor+1}^{N} \frac{1}{(2n-1)4^{n-1}} \binom{2n-1}{j} (3n-j-3/2).$$

The author noticed numerically that this coefficient behaved like a jump function. More precisely

$$a_{j,N} \approx \begin{cases} 2 & \text{if } 0 \leq j \leq N-2 \\ 1 & \text{if } j = N-1 \\ 0 & \text{if } N \leq j \leq 2N-1. \end{cases}$$

Here we give some evidence of this fact. An unknown referee has kindly provided part of the proof below.

As $a_{0,N} = 2(1-4^{-N})$ we assume that $1 \le j$. Also if $n \le \lfloor j/2 \rfloor$ then $\binom{2n-1}{j} = 0$ since j > 2n-1. Thus we write for $1 \le j$

$$a_{j,N} = 6\sum_{n=1}^{N} \frac{1}{4^n} \binom{2n-1}{j} - 4\sum_{n=1}^{N} \frac{1}{4^n} \binom{2n-2}{j-1},$$

where we have used that $\binom{2n-1}{j} = \frac{2n-1}{j}\binom{2n-2}{j-1}$ as long as $1 \le j$. Now we will show that

$$2 = a_{j,N} + \sum_{n=N+1}^{\infty} \frac{1}{(2n-1)4^{n-1}} \binom{2n-1}{j} (3n-j-3/2) = a_{j,N} + \operatorname{Tail}(N,j).$$
(7)

The tail will be seen to be small in a sense explained below. But the middle formula of (7) can be written as (curves are oriented in the usual way)

$$\begin{split} 6\sum_{n=1}^{\infty} \frac{1}{4^n} \binom{2n-1}{j} &- 4\sum_{n=1}^{\infty} \frac{1}{4^n} \binom{2n-2}{j-1} \\ &= \frac{1}{2\pi i} (6\sum_{n=1}^{\infty} \int_{|z|=1/2} \frac{(1+z)^{2n-1}}{4^n z^{j+1}} dz - 4\sum_{n=1}^{\infty} \int_{|z|=1/2} \frac{(1+z)^{2n-2}}{4^n z^j} dz) \\ &= \frac{1}{2\pi i} \int_{|z|=1/2} \frac{1}{4z^j (1 - \frac{(1+z)^2}{4})} (\frac{6(1+z)}{z} - 4) dz. \end{split}$$

Now one deforms the curve |z| = 1/2 to |z| = r, computing the residues at z = 1, -3 (-2,0 respectively). Notice that the integral over the curve |z| = r tends to zero if $r \to \infty$. This proves (7).

The evidence that our function $a_{j,N}$ behaves like a jump function is given by:

- a) Tail(N, j) = O(1). For any fixed $0 < \delta < 1$, Tail $(N, j) \rightarrow 0$ uniformly in j if $1 \le j < N\delta$ and $N \rightarrow \infty$.
- b) For any fixed $0 < \delta < 1$, Tail $(N, j) \rightarrow 2$ uniformly in j if $N \cdot (1 + \delta) < j \leq 2N$ and $N \rightarrow \infty$.

Actas del IX Congreso Dr. Antonio A. R. Monteiro, 2007

Proof. As above the tail can be written using residues as

 $\operatorname{Tail}(N, j)$

$$= 6 \cdot \frac{1}{2\pi i} \int_{|z|=1/2} \frac{(1+z)^{2N+1}}{4^N z^{j+1} (4-(1+z)^2)} dz - 4 \cdot \frac{1}{2\pi i} \int_{|z|=1/2} \frac{(1+z)^{2N}}{4^N z^j (4-(1+z)^2)} dz$$
$$= 6 \cdot S_1(N, j) - 4 \cdot S_2(N, j)$$

We will compare the above integrals with the more suitable

$$S_1'(N,j) = \frac{1}{2\pi i} \int_{|z|=\frac{1}{2}} \frac{1}{4(1-z)} \cdot \frac{(1+z)^{2N+1}}{4^N z^{j+1}} dz,$$

$$S_2'(N,j) = \frac{1}{2\pi i} \int_{|z|=\frac{1}{2}} \frac{1}{4(1-z)} \cdot \frac{(1+z)^{2N}}{4^N z^j} dz.$$

Indeed we will see that uniformly in $0 \le j \le 2N$, i = 1, 2 one has

$$S_i(N,j) - S'_i(N,j) = o(1) \text{ as } N \to \infty.$$
(8)

Also, we will prove for fixed $0 < \delta < 1$, i = 1, 2

$$S'_i(N,j) \to 0$$
 uniformly in j if $1 \le j \le N\delta; N \to \infty$, (9)

$$S_1'(N,j) + S_1'(N,2N-j) = \frac{1}{2}; \ S_2'(N,j) + S_2'(N,2N-j+1) = \frac{1}{4}$$
(10)

Observe that a), b) follows from (8), (9), (10) and the fact that $0 \leq S'_i(N, j)$.

To prove (8) say, for i = 1, notice that

$$S_1(N,j) - S'_1(N,j) = \frac{1}{2\pi i} \int_{\gamma_1 + \gamma_2} g(z) \frac{(1+z)^{2N+1}}{4^N z^{j+1}} dz$$

where g(z) is a regular function on |z| = 1; γ_1 is the curve given by $\{|z| = 1, \varepsilon(N) \leq Arg(z) \leq 2\pi - \varepsilon(N)\}$ and $0 < \varepsilon(N)$ is chosen so that $|1 + z| \leq 2(1 - \frac{\log N}{2N})$ on γ_1 . Now it is not difficult to see that $\varepsilon(N)$ tends to zero if $N \to \infty$. Also we denote γ_2 the curve $\{|z| = 1, -\varepsilon(N) \leq Arg(z) \leq \varepsilon(N)\}$; so that the length of γ_2 tends to zero as $N \to \infty$.

Now on γ_1 the above integral is by the maximum modulus principle

$$\int_{\gamma_1} = O(\frac{(1 - \frac{\log N}{2N})^{2N}}{1}) = o(1)$$

Now the integral over γ_2 tends to zero because the length of γ_2 tends to zero. This proves $S_1(N, j) - S'_1(N, j) = o(1)$ as $N \to \infty$. The proof for i = 2 is similar.

Now in the definition of $S'_1(N, j)$ deforming the curve |z| = 1/2 to a curve |z| = 2 and computing the residue at z = 1 one has

$$S_1'(N,j) = \frac{1}{2} + \frac{1}{2\pi i} \int_{|z|=2} \frac{1}{4(1-z)} \cdot \frac{(1+z)^{2N+1}}{4^N z^{j+1}} dz$$

This last integral is $-S'_1(N, 2N - j)$ making the change of variable z = 1/w. This proves (10) (case i = 2 is similar).

Finally to prove (9) notice that

$$|S_1'(N,j)| = |\frac{1}{2\pi i} \int_{|z|=r<1} \frac{1}{4(1-z)} \cdot \frac{(1+z)^{2N+1}}{4^N z^{j+1}}| < <_r \left(\frac{(1+r)^2}{4}\right)^N \frac{1}{r^j} \le \left(\frac{(1+r)^2}{4.r^\delta}\right)^N$$

But $\left(\frac{(1+r)^2}{4r^\delta}\right) < 1$ for $r = \frac{\delta}{2-\delta}$. Again case $i = 2$ is similar.

Actas del IX Congreso Dr. Antonio A. R. Monteiro, 2007

Notice that $S'_1(N,N) = \frac{1}{4}$. This follows from (10) with j = N.

I want to thank the referee for several valuable comments and suggestions which helped to simplify the presentation of this note.

REFERENCES

- [1] Panzone P., Some series for the Riemann-Hurwitz function. Revista de la UMA, 41,2 (1998), 89–107.
- [2] Panzone P., *Combinatorial Sums and Series for the Riemann-Hurwitz function II*. Actas del Congreso A. Monteiro V (1999), 109–125.
- [3] Titchmarsh E., The theory of the Riemann Zeta-function. Oxford Science Publications, 2nd edition (1986).
- [4] Whittaker E. and Watson G., A course of modern analysis. Cambridge, 4th edition (1952).

DEPARTAMENTO E INSTITUTO DE MATEMÁTICA, UNIVERSIDAD NACIONAL DEL SUR, AV. ALEM 1253, (8000) BAHÍA BLANCA, ARGENTINA

E-mail: papanzone@infovia.com.ar