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A DUALITY FOR MONADIC (n+1)-VALUED MV -ALGEBRAS

MARINA BEATRIZ LATTANZI AND ALEJANDRO GUSTAVO PETROVICH

ABSTRACT. Categorical equivalences between the varieties of monadic (n + 1)-valued
MV -algebras and the classes of monadic Boolean algebras endowed with certain family
of their filters are given. Using these equivalences, it is proved that every monadic (n+1)-
valued MV -algebra can be represented by a rich algebra.

1. INTRODUCTION AND PRELIMINARIES

Wajsberg algebras (see [7, 11, 23]) are an equivalent reformulation of Chang MV -
algebras based on implication instead of disjunction. MV -algebras were introduced by
Chang [4, 5] to prove the completeness of the infinite valued Łukasiewicz propositional
calculus. The classes of (n + 1)-valued MV -algebras were introduced by R. Grigolia in
[13], who also gave their equational characterization. For each n > 0, this variety is gener-
ated by the chain of length n+1 and the algebras belonging to this variety are the algebraic
models of the (n+1)-valued Łukasiewicz propositional calculus. Lukasiewicz 3-valued and
4-valued algebras coincide with 3-valued and 4-valued MV -algebras, respectively.

Y. Komori [16] introduced the CN-algebras as algebraic models of
Łukasiewicz infinite-valued propositional calculus formulated in terms of the operations im-
plication and negation. A. J. Rodriguez [23] called Wajsberg algebras what was previously
known as CN-algebras (see also [11]). (n + 1)-valued Wajsberg algebras are equivalent to
(n + 1)-valued MV -algebras. The variety of (n + 1)-bounded W -algebras is generated by
chains of length less or equal than n+1. In this paper Wajsberg algebras will be used instead
of MV-algebras.

For each integer n > 0, it is shown in [19] that there exists a categorical equivalence be-
tween the variety of (n+1)-valued MV-algebras and the class of Boolean algebras endowed
with a certain family of filters. Another similar categorical equivalence is given by A. Di
Nola and A. Lettieri in [9]. In this paper, the mentioned equivalence is extended to the vari-
ety of monadic (n+1)-valued MV-algebras. Using this equivalence, it is proved that every
monadic (n + 1)-valued MV-algebra can be represented by a rich algebra. When n = 2,
the results given by Luiz Monteiro in [21] about the representation of monadic 3-valued
Lukasiewicz algebras by rich algebras are obtained.

The basic results about MV -algebras can be found, for instance, in [7]. For a reformula-
tion in the context of Wajsberg algebras (or CN-algebras) see [23, 11, 16].

A Wajsberg algebra (or W -algebra, for short) is an algebra A = 〈A,→,¬,1〉 of type
(2,1,0) satisfying the following identities: 1→ x = x, (x→ y)→ ((y→ z)→ (x→ z)) = 1,
(x→ y)→ y = (y→ x)→ x and (¬y→¬x)→ (x→ y) = 1. The reduct (A,∨,∧,¬,0,1) is a
Kleene algebra where 0 = ¬1, x∨ y = (x→ y)→ y, x∧ y = ¬(¬x∨¬y) and x ≤ y if and
only if x→ y = 1. If we set x⊕ y = ¬y→ x and x� y = ¬(x→¬y) then 〈A,⊕,�,0〉 is an
MV -algebra. The set B(A) = {x ∈ A : x� x = x} is a Boolean algebra. Indeed, B(A) is the
Boolean algebra of the complemented elements of the lattice reduct of A. The elements of
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B(A) are called the boolean elements of A. For all x ∈ A and each non negative integer m
we set:

0x = 0 and (m+1)x = (mx)⊕ x;
x0 = 1 and xm+1 = (xm)� x.

For every x ∈ A and all integer m≥ 0, the following properties hold:
(W1) ¬(xm) = m(¬x),
(W2) (p→q)m ≤ mp→mq.

A subset F ⊆ A is an implicative filter of A if 1 ∈ F and for all a,b ∈ A, a,a→ b ∈ F
implies b ∈ F . Implicative filters are lattice filters which are closed by the operation �.
The family of all implicative filters of A is an algebraic lattice under set-inclusion, and it is
isomorphic to the algebraic lattice of all congruence relations on A. For every implicative
filter F of A and each x ∈ A we represent with [x]F the set of all elements y ∈ A such that x
and y are F−congruent. An implicative filter of A is prime if it is a lattice prime filter of A.
We denote by χ(A) the set of all prime implicative filters of A. An implicative filter P of A
is prime if and only if A/P is a chain.

In what follows let n≥ 1 be an integer.
The unit interval [0,1] endowed with the operations x→ y := min {1,1− x + y} and

¬x := 1−x is a Wajsberg algebra. We denote by Ln+1 the subalgebra of [0,1] whose universe
is
{

0, 1
n , 2

n , . . . , n−1
n ,1

}
. It is verified that Lt+1 is a subalgebra of Ln+1 if and only if t divides

n.

An (n+1)-bounded Wajsberg algebra A is a Wajsberg algebra which verifies xn = xn+1,
for every x ∈ A.

An (n + 1)-valued Wajsberg algebra A is an (n + 1)-bounded Wajsberg algebra which
verifies n(x j⊕ (¬x�¬x j−1)) = 1, for every x ∈ A and 1 < j < n does not divide n.

If 〈A,→,¬,1〉 is an (n + 1)-valued Wajsberg algebra then 〈A,∨,∧,¬,σ1,
σ2, . . . ,σn,0,1〉 is an (n + 1)-valued Łukasiewicz algebra, where the operators σi, for 1 ≤
i≤ n, are defined in terms of the Wajsberg operations (see [15]).

The following results are developed in [19] and establish the equivalences mentioned
above.

Let B be a Boolean algebra. We denote by B[n] the set of all increasing monotone func-
tions from {1,2, . . . ,n} into B. B[n] with the operations of the lattice defined pointwise, the
chain of constants 0 = c0 < c1 < .. . < cn−1 < cn = 1 where, for each 0≤ k≤ n, ck(i) is equal
to 1 if i≥ n+1−k and equal to 0 otherwise, the negation defined by (¬ f )(i) =¬ f (n+1− i)
for each 1≤ i≤ n and the modal operators σi( f )( j) = f (i) for all 1≤ i≤ n and 1≤ j ≤ n,
is a Post algebra of order n+1 [2]; therefore it is an (n+1)-valued Wajsberg algebra [24].
In Theorem 1.1 a direct proof of this results is given, showing explicitly the form of opera-
tions. In every (n+1)-valued Wajsberg algebra, the prime filters occur in finite and disjoint
chains, then by the Martínez’s Unicity Theorem [20] the implication is determined by the
order.

Theorem 1.1. [19] Let B be a Boolean algebra and n≥ 1 be an integer. Then 〈B[n],7→,¬,I〉
is an (n + 1)-valued Wajsberg algebra where B[n] =
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{ f : {1,2, . . . ,n}−→B : f (i) ≤ f ( j) for all i, j such that i ≤ j}, I is the constant function
equal to 1 and, for f ,g ∈ B[n] and 1 ≤ k ≤ n, (¬ f )(k) = ¬ f (n + 1− k) and ( f 7→g)(k) =
n−k+1∧

i=1
( f (i)→g(i+ k−1)).

Remark 1.1. We denote by Div(n) the set of all positive divisors of n. Let d ∈ Div(n).
For each integer j, 1 ≤ j ≤ n, there exists an only integer qd, j, 1 ≤ qd, j ≤ d, such that
(qd, j− 1) n

d < j ≤ qd, j
n
d . Indeed, qd, j is the first element of the set X = {q ∈ N : 1 ≤ q ≤

d, j ≤ q n
d}. That is to say that the only block corresponding to the divisor d of n that

contains j is that determined by qd, j. Thus, for any d ∈ Div(n), we can think an n-tuple to
be composed by d blocks, each one of them with n

d elements.

In what follows, for each f ∈ B[n], d ∈ Div(n) and any integer 1≤ q≤ d, we shall write
ξd,q( f ) instead of f (q n

d )→ f ((q−1) n
d +1).

Corollary 1.1. [19] Let B be a Boolean algebra, let n ≥ 1 be an integer and let h be
a function from the lattice of divisors of n into the lattice of filters of B. The set { f ∈
B[n] : ξd,q( f ) ∈ h(d), for each d ∈ Div(n) and all 1≤ q≤ d} is denoted by M(B,h). Then
〈M(B,h),7→,¬,I〉 is an (n + 1)-valued Wajsberg subalgebra of B[n]. Also, if h(d) = B for
each d ∈ D = Div(n)−{n} then M(B,h) is a Post algebra of order n+1.

Theorem 1.2. [19] Let 〈A,→,¬,1〉 be an (n + 1)-valued Wajsberg algebra. For each d ∈
Div(n) let hA(d) = Pd ∩B(A), where Pd =

⋂
{P ∈ χ(A) : A/P ⊆ Ld+1}. Then ϕ : A−→

M(B(A),hA) is a W-isomorphism, being ϕ(x)(i) = σi(x) for all x ∈ A and every integer
1≤ i≤ n.

Definition 1.1. (a) A pair 〈B,h〉 ∈Bn+1 if B is a Boolean algebra and h is a function from the
lattice of divisors of n into the lattice of filters of B such that h(n) = {1} and h(gcd{d,r}) =
h(d)∨ h(r), for every d,r ∈ Div(n) (gcd{d,r} is the greatest common divisor of the set
{d,r}).

(b) Objects 〈B1,h1〉 and 〈B2,h2〉 in Bn+1 are isomorphic if there exists a boolean isomor-
phism ϕ : B1−→B2 which verifies ϕ−1(h2(d)) = h1(d) for all d ∈ Div(n).

Remark 1.2. Let 〈A,→,¬,1〉 be an (n + 1)-valued Wajsberg algebra. Then 〈B(A),hA〉 ∈
Bn+1, where hA(d) = Pd∩B(A) being Pd =

⋂
{P∈ χ(A) : A/P⊆ Ld+1}, for each d ∈Div(n).

Theorem 1.3. [19] Let 〈B,h〉 ∈ Bn+1 and let A = M(B,h). Then 〈B,h〉 and 〈B(A),hA〉 are
isomorphic objects in Bn+1.

Let W n+1 be the category of (n + 1)-valued W -algebras and W -homomorphisms. Let
Bn+1 be the category whose objects are pairs in Bn+1 and whose morphisms are defined in
the following way: if O1 = 〈B1,h1〉 and O2 = 〈B2,h2〉 are objects in this category, θ is a
morphism from O1 into O2 if it is a boolean homomorphism from B1 into B2 which verifies
h1(d)⊆ θ−1(h2(d)) for any d ∈ Div(n).

It is easy to see that θ is an isomorphism from O1 onto O2 if it is a boolean isomorphism
from B1 onto B2 which verifies h1(d) = θ−1(h2(d)) for each d ∈ Div(n).

Let B be the functor from W n+1 to Bn+1 defined in the following way:
(i) For each object A = 〈A,→,¬,1〉 in W n+1, B(A ) = 〈B(A),hA〉, where B(A) is the set

of boolean elements of A and for all d divisor of n, hA(d) = Pd ∩B(A), being Pd =
⋂
{P ∈

χ(A) : A/P⊆ Ld+1}.
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(ii) If A1 and A2 are objects in the category W n+1 and g : A1 −→ A2 is a W n+1-
morphism, B(g) : 〈B(A1),hA1〉 −→ 〈B(A2),hA2〉 is defined by B(g) = g/B(A1).

Let M be the functor from Bn+1 to W n+1 defined in the following way:
(i) For each object 〈B,h〉 in Bn+1, let M(〈B,h〉) = 〈M(B,h),7→,¬,I〉.
(ii) If 〈B1,h1〉 and 〈B2,h2〉 are objects in the category Bn+1 and g is a Bn+1-morphism

from 〈B1,h1〉 into 〈B2,h2〉 let M(g) : M(B1,h1) −→M(B2,h2) where M(g)( f ) = g ◦ f , for
any f ∈M(B1,h1).

From Theorems 1.2 and 1.3 the functors B and M define a natural equivalence between
the categories W n+1 and Bn+1.

Monadic (n+1)-valued W -algebras [25, 26, 12, 10, 1] are defined as follows.

Definition 1.2. An algebra 〈A,→,¬,∀,1〉 is a monadic Wajsberg algebra if
〈A,→,¬,1〉 is a Wajsberg algebra and ∀ : A−→A is a function which verifies the following
identities:

(U1) ∀x→x = 1,
(U2) ∀(∀x→y) = ∀x→∀y,
(U3)∀(¬x→x) = ¬∀x→∀x.

Observe that identity U3 can be write ∀(2x) = 2∀x.

Let 〈A,→,¬,∀,1〉 be a monadic Wajsberg algebra. Often we will write A or 〈A,∀〉 instead
of 〈A,→,¬,∀,1〉. If X ⊆ A, ∀(X) = {∀x : x ∈ X}. Algebras ∀(A) and B(A) are monadic
Wajsberg subalgebras of A. In particular 〈B(A),∀〉 is a monadic Boolean algebra. For all
x,y ∈ A and all integer m≥ 0, the following properties hold:

(U4) ∀∀x = ∀x,
(U5) x≤ y implies ∀x≤ ∀y,
(U6) ∀(x∧ y) = ∀x∧∀y,
(U7) ∀(x→y)≤ ∀x→∀y,
(U8) ∀¬∀x = ¬∀x,
(U9) ∀(x�∀y) = ∀x�∀y,

(U10) (∀x)m ≤ ∀(xm).

Definition 1.3. A monadic Wajsberg algebra 〈A,→,¬,∀,1〉 is a monadic
(n + 1)-valued Wajsberg algebra (MW n+1-algebra, for short) if 〈A,→,¬,1〉 is an (n + 1)-
valued Wajsberg algebra.

The varieties of monadic (n+1)-valued Wajsberg algebras will be denoted by MWn+1.

In [18] the classes of (n + 1)-bounded Wajsberg algebras with a U-operator (or UWn+1-
algebras) are defined as (n+1)-bounded Wajsberg algebras with an operator which verifies
the properties (U1) and (U2). With UWn+1 we denote the varieties of (n + 1)-bounded
Wajsberg algebras with a U-operator.

Lemma 1.1. MWn+1 ⊆ UWn+1, for all n≥ 1.

Remark 1.3. (i) If 〈A,→,¬,∀,1〉 is a monadic Wajsberg algebra then 〈A,⊕,�,
¬,∃,0,1〉 is a monadic MV -algebra (see [10, 1, 25, 12]) where for each x ∈ A, ∃x = ¬∀¬x.

(ii) If 〈A,⊕,�,¬,∃,0,1〉 is a monadic MV -algebra then 〈A,→,¬,∀,1〉 is a monadic Wa-
jsberg algebra where for each x ∈ A, ∀x = ¬∃¬x.
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Theorem 1.4. [10, Corollary 14] If 〈A,∀〉 is a totally ordered monadic Wajsberg algebra,
then ∀ is the identity.

The following result is consequence of [18, Theorem 2.2] and Lemma 1.1.

Lemma 1.2. The variety MWn+1 is semisimple.

Theorem 2.3 in [18] for UWn+1-algebras yields the following result in the class of mo-
nadic (n+1)-valued Wajsberg algebras.

Theorem 1.5. Let A be a non trivial MW n+1-algebra. Then A is a simple MW n+1-algebra
if, and only if, ∀(A) is a simple (n+1)-valued Wajsberg algebra if, and only if, ∀(A)∩B(A)
is simple Boolean algebra.

The following properties hold for every non trivial Wajsberg algebra A.
(P1) A is a simple (n+1)-valued Wajsberg algebra if and only if A is isomorphic to Lr+1

for some integer r ≥ 1, r divisor of n.
(P2) A is an (n + 1)-valued Wajsberg algebra if and only if A can be represented (as

subdirect product) in ∏
i/n

Lχi+1
i+1 , where χi+1 = {D ∈ χ(A) : A/D' Li+1}.

Corollary 1.2. 〈LI
n+1,∀〉 is a simple MW n+1-algebra, where I is a nonempty set and for

each f : I −→ Ln+1, ∀ f is the constant function defined by (∀ f )(x) = in f{ f (x) : x ∈ I}.
Theorem 1.6. If A is a simple MW n+1-algebra, then it is isomorphic to a subalgebra of
〈LI

n+1,∀〉, for some nonempty set I.

Proof. The proof is a special case of Theorem 2.4 in [18] using Theorem 1.5, properties
(P1) and (P2), Corollary 1.2 and Theorem 1.4. �

Corollary 1.3. Let 〈A,∀〉 be an MW n+1-algebra. Then ∀(kx) = k∀x for every x ∈ A and all
integer 1≤ k ≤ n.

Proof. It is easy to prove that the identities are valid in a simple MW n+1-algebra; so they
are valid in all MW n+1-algebra, follows from Lemma 1.2. �

Lemma 1.3. Let 〈A,∀〉 be an MW n+1-algebra. Then for every x∈A the following properties
hold:

(U11) ∀(xk) = (∀x)k, for each integer 1≤ k ≤ n,
(U12) ∀(σi(x)) = σi(∀x)), for every i ∈ {1,2, . . . ,n}.

Proof. (U11) follows from properties W1, W2, U5, U8, U9 and U10. (U12) follows from
Corollary 1.3, U11 and [15, Theorem 5.23]. �

It is proved in [12] that monadic (n+1)-valued MV -algebras are polynomially equivalent
to monadic (n+1)-valued Łukasiewicz algebras for n = 2 and n = 3, respectively.

2. THE DUALITY FOR MONADIC (n+1)-VALUED WAJSBERG ALGEBRAS

Theorem 2.1. Let 〈B,∀〉 be a monadic Boolean algebra and n ≥ 1 be an integer. Then
〈B[n],7→,¬,V,I〉 is a monadic (n+1)-valued Wajsberg algebra where B[n] = { f : {1,2, . . . ,n}
−→B : f (i)≤ f ( j) for all i, j such that i≤ j}, I is the constant function equal to 1 and, for

f ,g ∈ B[n] and 1≤ k≤ n, (¬ f )(k) =¬ f (n+1−k), ( f 7→g)(k) =
n−k+1∧

i=1
( f (i)→g(i+k−1))

and (V f )(i) = ∀( f (i)).
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Proof. From Theorem 1.1 〈B[n],7→,¬,I〉 is an (n + 1)-valued Wajsberg algebra. Moreover,
for every f ,g ∈ B[n] and integers i,k, 1≤ i,k ≤ n, the following properties hold:

(1) V f ≤ f
(V f )(i) = ∀ f (i)≤ f (i)

(2) V( f 7→Vg) = V f 7→Vg

(V( f 7→Vg))(k) = ∀(( f 7→Vg)(k)) = ∀
(

n−k+1∧
i=1

( f (i)→(Vg)(i+ k−1))
)

= ∀
(

n−k+1∧
i=1

( f (i)→∀(g(i+ k−1))
)

=
n−k+1∧

i=1
∀( f (i)→∀(g(i+ k−1)))

=
n−k+1∧

i=1
(∀( f (i))→∀(g(i+ k−1))) =

n−k+1∧
i=1

((V f )(i)→(Vg)(i+ k−1)))

= (V f 7→Vg)(k).
(3) V(¬ f 7→ f ) = ¬V f 7→V f .

(V(¬ f 7→ f ))(k) = ∀((¬ f 7→ f )(k))

= ∀
(

n−k+1∧
i=1

(¬ f (n+1− i)→ f (i+ k−1))
)

=
n−k+1∧

i=1
∀( f (n+1− i)∨ f (i+ k−1)). (1)

On the other hand,

(¬V f 7→ V f )(k) =
n−k+1∧

i=1
(¬(V f )(n + 1 − i) → (V f )(i + k − 1)) =

n−k+1∧
i=1

(∀ f (n+1− i)∨∀ f (i+ k−1)). (2)

If i≤ bn−k
2 c (bxc denotes the largest integer less or equal to x, for a real number

x) then i+k−1≤ n+1− i and the equality follows from (1), (2) and U5. Similarly
if i > bn−k

2 c because n+1− i≤ i+ k−1.

�

Remark 2.1. Let 〈B,∀〉 be a monadic Boolean algebra. Algebras (∀(B))[n] and V
(
B[n]
)

are
isomorphic algebras. Indeed, (∀(B))[n] = { f : {1,2, . . . ,n}−→∀(B) : f (i)≤ f ( j) for all i, j
such that i≤ j} and V

(
B[n]
)

= { f ∈ B[n] : V f = f}= { f ∈ B[n] : ∀( f (i)) = f (i), for all i ∈
{1,2, . . .n}}. It is clear that f ∈ (∀(B))[n] if and only if f is an increasing function from the
set {1,2, . . . ,n} into B such that f (i) ∈ ∀(B) for every 1≤ i≤ n; if and only if f ∈ B[n] and
∀( f (i)) = f (i) for every 1≤ i≤ n; if and only if f ∈ V

(
B[n]
)
.

Corollary 2.1. Let 〈B,∀〉 be a monadic Boolean algebra, n≥ 1 be an integer and hM be a
function from the lattice of divisors of n into the lattice of monadic filters of B. Let M(B,hM)
be the set { f ∈ B[n] : f (q n

d )→ f ((q−1) n
d +1)∈ hM(d), for each d ∈Div(n) and all 1≤ q≤

d}. Then 〈M(B,hM),7→,¬,V,I〉 is a monadic (n+1)-valued Wajsberg subalgebra of B[n].

Proof. From Corollary 1.1 we only shall prove that V is closed into M
(
B,hM

)
. Let f ∈

M
(
B,hM

)
, then f (q n

d )→ f ((q− 1) n
d + 1) ∈ hM(d), for every d ∈ Div(n) and all integer q,

1≤ q≤ d. Since hM(d) is a monadic filter, using U7 we have (V f )(q n
d )→(V f )((q−1) n

d +
1) = ∀( f (q n

d ))→∀( f ((q−1) n
d +1))≥ ∀( f (q n

d )→ f ((q−1) n
d +1)); then V f ∈M

(
B,hM

)
.

�
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Remark 2.2. Let 〈B,∀〉 be a monadic Boolean algebra, n ≥ 1 be an integer and hM be a
function from the lattice of divisors of n into the lattice of monadic filters of B. Then, for
each f ∈M

(
B,hM

)
, V f is the last element of the set ( f ]∩M

(
B,hM

)
∩ (∀(B))[n].

Corollary 2.2. Let 〈B,∀〉 be a monadic Boolean algebra, n ≥ 1 be an integer and h be a
function from the lattice of divisors of n into the lattice of filters of B. Then 〈M(B,h),7→
,¬,V,I〉 is a monadic (n + 1)-valued Wajsberg algebra where (V f )(i) = ∀( f (i)), for each
f ∈M(B,h) and 1≤ i≤ n.

Proof. Let 〈B,∀〉 be a monadic Boolean algebra. If F be a filter of B, then ∀−1F is a
monadic filter of B and ∀−1F ⊆ F . Moreover, ∀−1F is maximal among all the monadic
filters of B included in F . Let hM be the function from the lattice of divisors of n into the
lattice of monadic filters of B defined by hM(d) = ∀−1h(d), for each d ∈ Div(n). From
Corollary 2.1 and Remark 2.2 we have that 〈M(B,hM),7→,¬,V,I〉 is a monadic (n + 1)-
valued Wajsberg algebra where, for each f ∈ M

(
B,hM

)
, V f is the last element of the set

( f ]∩M
(
B,hM

)
∩(∀(B))[n]. Moreover, 〈M(B,hM),7→,¬,I〉 is a W -subalgebra of 〈M(B,h),7→

,¬,I〉 because for every f ∈ M(B,hM) is f (q n
d )→ f ((q− 1) n

d + 1) ∈ hM(d) ⊆ h(d), for
each d ∈ Div(n) and all 1 ≤ q ≤ d. Let f ∈ M(B,h); then V f is the last element of the
set ( f ]∩M

(
B,hM

)
∩ (∀(B))[n] because, if there exists g ∈ M(B,h) such that g ≤ f and

g ∈ M
(
B,hM

)
∩ (∀(B))[n], then g = Vg ≤ V f . Therefore V is the quantifier onto M(B,h)

determined by the subalgebra M
(
B,hM

)
∩ (∀(B))[n]. �

Theorem 2.2. Let 〈A,→,¬,∀,1〉 be a monadic (n + 1)-valued Wajsberg algebra. Let hA
be the function from the lattice of divisors of n into the lattice of filters of B(A) where,
for each d ∈ Div(n), hA(d) = Pd ∩B(A), being Pd =

⋂
{P ∈ χ(A) : A/P ⊆ Ld+1}. Then

〈M(B(A),hA),7→,¬,V,I〉 and 〈A,→,¬,∀,1〉 are isomorphic monadic (n + 1)-valued Wajs-
berg algebras.

Proof. From Theorem 1.2 the function ϕ : A−→M(B(A),hA) is a W -isomorphism, being
ϕ(x)(i) = σi(x) for all x∈ A and every integer 1≤ i≤ n; moreover, Vϕ(x) = ϕ(∀x) because
from U12 we have (Vϕ(x))(i) = ∀(ϕ(x)(i)) = ∀(σi(x)) = σi(∀x) = (ϕ(∀x))(i). �

Definition 2.1. (i) A 3-tuple 〈B,∀,h〉 ∈MBn+1 if 〈B,∀〉 is a monadic Boolean algebra and h
is a function from the lattice of divisors of n into the lattice of filters of B such that h(n) = {1}
and h(gcd{d,r}) = h(d)∨ h(r), for every d,r ∈ Div(n) (gcd{d,r} is the greatest common
divisor of the set {d,r}).

(ii) 3-tuples 〈B1,∀1,h1〉 and 〈B2,∀2,h2〉 in MBn+1 are isomorphic if there exists a mo-
nadic boolean isomorphism ϕ : B1−→B2 which verifies ϕ−1(h2(d)) = h1(d) for all d ∈
Div(n).

Remark 2.3. Let 〈A,→,¬,∀,1〉 be a monadic (n + 1)-valued Wajsberg algebra. Then
〈B(A),∀,hA〉 ∈MBn+1, where, for each d ∈ Div(n), hA(d) = Pd ∩B(A) being Pd =

⋂
{P ∈

χ(A) : A/P⊆ Ld+1}.

Theorem 2.3. Let 〈B,∀,h〉 ∈MBn+1 and let A = M(B,h). Then 〈B,∀,h〉 and 〈B(A),V,hA〉
are isomorphic objects in MBn+1.

Proof. Let 〈B,∀,h〉 ∈ MBn+1 and A = M(B,h). By Corollary 2.2 we know that 〈A,7→
,¬,V,I〉 is a monadic (n + 1)-valued Wajsberg algebra where (V f )(i) = ∀( f (i)), for all
f ∈ A and every integer 1≤ i≤ n.
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It is easy to see that B(A) is the subalgebra that consist of all constant functions. If hA
is the function from the lattice of divisors of n into the lattice of filters of B(A) defined by
hA(d) = Pd ∩B(A), being Pd =

⋂
{P ∈ χ(A) : A/P ⊆ Ld+1}, then 〈B(A),V,hA〉 ∈ MBn+1

(because Remark 2.3).
Let µ : B−→B(A) such that µ(a) is the constant function from {1,2, . . . ,n} into B that

takes the value a, for each a ∈ B. In [19, Theorem 3] it is prove that µ is a boolean iso-
morphism from B onto B(A) which verifies µ−1(Pd ∩B(A)) = h(d), for each d ∈ Div(n).
Moreover, for each x ∈ B and all i ∈ {1,2, . . .n}, it is (µ(∀x))(i) = ∀x = ∀(µ(x)(i)) =
(Vµ(x))(i). �

Let MW n+1 be the category of monadic (n + 1)-valued W -algebras and monadic W -
homomorphisms. Let MBn+1 be the category whose objects are the 3-tuples in MBn+1

and whose morphisms are defined in the following way: if O1 = 〈B1,∀1,h1〉 and O2 =
〈B2,∀2,h2〉 are objects in this category, θ is a morphism from O1 into O2 if it is a monadic
boolean homomorphism from B1 into B2 which verifies h1(d) ⊆ θ−1(h2(d)) for any d ∈
Div(n).

It is easy to see that θ is an isomorphism from O1 onto O2 if it is a monadic boolean
isomorphism from B1 onto B2 which verifies h1(d) = θ−1(h2(d)) for each d ∈ Div(n).

Let B be defined from MW n+1 to MBn+1 as follows:
(i) For each object A = 〈A,→,¬,∀,1〉 in the category MW n+1, B(A ) = 〈B(A),∀,hA〉,

where B(A) is the set of boolean elements of A and for all d divisor of n, hA(d) = Pd ∩B(A),
being Pd =

⋂
{P ∈ χ(A) : A/P⊆ Ld+1}.

(ii) If A1 and A2 are objects in the category MW n+1 and g : A1 −→A2 is an MW n+1-
morphism, B(g) : 〈B(A1),∀1,hA1〉 −→ 〈B(A2),∀2hA2〉 is defined by B(g) = g/B(A1).

It is immediate that B(g) is a monadic boolean homomorphism. Moreover, B(g) is an
MBn+1-morphism. Indeed, let a ∈ hA1(d). If a /∈ B(g)−1(hA2(d)) then g(a) /∈ hA2(d),
hence there exists a prime implicative filter P of A2 such that A2/P ⊆ Ld+1 and g(a) /∈ P.
Thus a /∈ g−1(P)∩B(A1). The function v : A1/g−1(P)−→A2/P defined by v([x]g−1(P)) =
[g(x)]P is an embedding from A1/g−1(P) into A2/P ⊆ Ld+1, i.e., A1/g−1(P) ⊆ Ld+1 then
a /∈ hA1(d) which is a contradiction. It is easy to verify that B is a functor.

Let M be defined from MBn+1 to MW n+1 as follows:
(i) For each object 〈B,∀,h〉 in MBn+1, let M(〈B,∀,h〉) = 〈M(B,h),

7→,¬,V,I〉, where V is defined pointwise.
(ii) If 〈B1,∀1,h1〉 and 〈B2,∀2,h2〉 are objects in MBn+1 and g is an

MBn+1-morphism from 〈B1,∀1,h1〉 into 〈B2,∀2,h2〉 let M(g) : M(B1,h1) −→ M(B2,h2)
where M(g)( f ) = g◦ f , for any f ∈M(B1,h1).

It is clear that M(g) is well defined because, if f ∈M(B1,h1) then for each d ∈ Div(n)
and all integer q, 1 ≤ q ≤ d we have ξd,q( f ) ∈ h1(d); hence ξd,q(g ◦ f ) = g(ξd,q( f )) ∈
g(h1(d)) ⊆ gg−1(h2(d) ⊆ h2(d). Therefore g ◦ f ∈M(B2,h2). Besides M(g) is a monadic
W -homomorphism. It is easy to see that M is a functor.

From Theorems 2.2 and 2.3 follows that the functors B and M define a natural equivalence
between the categories MW n+1 and MBn+1.
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3. REPRESENTATION BY RICH ALGEBRAS

Using the natural equivalence established in section 2 and the Representation Theorem
by rich algebras for monadic Boolean algebras [14], we will prove that every monadic
(n+1)-valued Wajsberg algebra can be represented by a rich algebra. Specifically, we will
prove that every monadic (n + 1)-valued W -algebra is isomorphic to a subalgebra B of a
functional algebra AI such that, for every b ∈ B there exists x0 ∈ I such that b(x0) =

∧
x∈I

b(x).

Let 〈A,∀〉 a monadic (n+1)-valued Wajsberg algebra.

Claim 3.1 〈B(A),∀,hA〉 ∈ MBn+1 (see Remark 2.3). Particularly, 〈B(A),∀〉 is a monadic
Boolean algebra, therefore it can be represented by a rich algebra as follows [14]. A
constant of B(A) is a boolean homomorphism c : B(A)→∀(B(A)) such that c(x) = x for
every x ∈ ∀(B(A)); the set of all constants of B(A) is denoted by I. The functional al-
gebra 〈(∀(B(A)))I,V 〉 is a monadic boolean algebra where (V f )(c) =

∧
c∈I

f (c), for each

f ∈ (∀(B(A)))I . Then η : B(A)→ (∀(B(A)))I defined by η(b)(c) = c(b) for each b ∈ B(A)
is a monadic boolean monomorphism such that η(b)(c) =

∧
x∈I

(η(b))(x).

Claim 3.2 The image of a filter in B(A) under ∀ is a filter in ∀(B(A)). Let h1 be the
function from the lattice of divisors of n into the lattice of filters of ∀(B(A)) defined by
h1(d) = ∀(hA(d)). It is easy to show that 〈∀(B(A)),∀,h1〉 ∈MBn+1; then, by Corollary 2.2,
〈M(∀(B(A)),h1),V〉 is a monadic (n+1)-valued Wajsberg algebra.

Claim 3.3 If F is a filter in ∀(B(A)), then F I is a filter in (∀(B(A)))I . Let h2 be the
function from the lattice of divisors of n into the lattice of filters of (∀(B(A)))I defined
by h2(d) = (∀(hA(d)))I . It is easy to show that 〈(∀(B(A)))I,V ,h2〉 ∈ MBn+1. Therefore,
〈M((∀(B(A)))I,h2),V〉 is a monadic (n+1)-valued Wajsberg algebra, follows from Corol-
lary 2.2.

Claim 3.4 〈M((∀(B(A)))I,h2),V〉 and 〈(M(∀(B(A)),h1))I,V 〉 are isomorphic algebras.
Let Ψ : M((∀(B(A)))I,h2) → (M(∀(B(A)),h1))I be the function defined by

((Ψ(g))(c))(i) = g(i)(c), for each g ∈M((∀(B(A)))I,h2), c ∈ I and i ∈ {1,2, . . . ,n}.
The function Ψ is well defined and it is a monadic W -isomorphism. Indeed, let g ∈

M((∀(B(A)))I,h2), d ∈ Div(n) and 1≤ q≤ d be an integer. For short let i0 = (q−1) n
d +1

and i1 = q n
d ; then ξd,q(g) = g(i1)→g(i0)∈ h2(d) = (∀(hA(d)))I . Therefore for each c∈ I we

have ξd,q((Ψ(g))(c)) = ((Ψ(g))(c))(i1)→((Ψ(g))(c))(i0) = g(i1)(c)→g(i0)(c) = (g(i1)→
g(i0))(c) ∈ h1(d) = ∀(hA(d)).

On the other hand, let f ,g ∈M((∀(B(A)))I,h2), c ∈ I and i ∈ {1,2, . . . ,n}; then:

(i) Ψ( f 7→g) = Ψ( f )→Ψ(g), indeed:

(Ψ( f 7→ g)(c))(i) = ( f 7→ g)(i)(c) =
n−i+1∧

k=1
( f (k)(c) → g(k + i − 1)(c))

=
∧
c∈I

(Ψ(g)(c))(i) =
n−i+1∧

k=1
((Ψ( f )(c))(k) → (Ψ(g)(c))(k + i − 1))

= (Ψ( f )(c) 7→Ψ(g)(c))(i).
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(ii) Ψ(¬ f ) = ¬Ψ( f ), and

(iii) Ψ(Vg) = V Ψ(g), indeed:
(Ψ(Vg)(c))(i) = ((Vg)(i))(c) = (V (g(i)))(c) =

∧
c∈I

g(i)(c) =
∧
c∈I

(Ψ(g)(c))(i)

=
(∧

c∈I
(Ψ(g)(c))

)
(i) = ((V Ψ(g))(c))(i).

(iv) Ψ is bijective.

Claim 3.5 From Theorem 2.2 〈A,∀〉 and 〈M(B(A),hA),V〉 are isomorphic monadic (n+1)-
valued Wajsberg algebras; the isomorphism is ϕ : A−→M(B(A),hA) defined by ϕ(x)(i) =
σi(x) for all x ∈ A and every integer 1≤ i≤ n.

Claim 3.6 The monomorphism η is a morphism between the objects 〈B(A),∀,hA〉 and
〈(∀(B(A)))I,V ,h2〉 in MBn+1. Thus, M(η) is a monadic W -monomorphism from
〈M(B(A),hA),V〉 into 〈M((∀(B(A)))I,h2),V〉.

From Claim 3.1 we only have to show hA(d) ⊆ η−1
(
(∀hA(d))I

)
, for every d ∈ Div(n).

If x ∈ hA(d) then ∀x ∈ ∀(hA(d)), on the other hand, ∀x = c(∀x) ≤ c(x), for each c ∈
I. Therefore c(x) = η(x)(c) ∈ ∀(hA(d)) for every c ∈ I, i.e., η(x) ∈ (hA(d))I , so x ∈
η−1

(
(∀hA(d))I

)
.

Claim 3.7 From Claims 3.1 to 3.6 we have the situation that is shown in the
following diagram. The function γ = Ψ ◦M(η) ◦ ϕ from A into (M(∀(B(A)),h1))I is a
monadic W -monomorphism such that for every a∈A there exists x0 ∈ I such that (γ(a))(x0)
=
∧
c∈I

(γ(a))(c).

〈A,∀〉
B ↓

η

〈B(A),∀,hA〉 −→ 〈(∀(B(A)))I,V ,h2〉
M ↓ ↓ M

〈M(B(A),hA),V〉 −→ 〈M((∀(B(A)))I,h2),V〉
M(η)

↓ Ψ

〈(M(∀(B(A)),h1))I,V 〉
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